
"Z80MU" Z80 and CP/M 2.2 Emulator User's Guide
or

The Care and Feeding of Your Imaginary Z80
or

Fakeware For The Techie Masses!
A Guide to the Complete Z80 Emulator

COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

Textformat angepasst an OpenOffice.org writer
25.11.2010 von Dr. Hehl Hans

Z80EMU.PDF
www.hehlhans.de/euroz80.htm

Describing the first of a two-part series of 8080, Z80, and CP/M-emulators
for the IBM PC. This document describes Z80MU (version 2.1, Z80MU
dated 10/30/85), a software emulation of the Z80 and CP/M 2.2. The

 second product - if it ever gets out the door - includes hardware
 emulation of the 8080, using the NEC V20 8088-compatible processor
 chip.

 Program written by Joan Riff for Computerwise Consulting Services.
Joan Riff

 Placed in the public domain. No copyright notice. No legal mumbo-jumbo.
 No request for a financial contribution. No warrantee. Just a bunch of
 marvelous software magic.
 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101
 "Z80MU" Z80 and CP/M 2.2 Emulator User's Guide

INTRODUCTION what is it?

 Z80MU is a software emulator of the ZILOG Z80 processor, which runs on
 the IBM PC. It also provides an emulation of Digital Research's CP/M

version 2.2 operating system.

It includes the following facilities:

 Complete emulation of Z80 object code, including all six
 active bits within the Z80 Flags Register.

 Emulation of CP/M 2.2, with the exception of hardware-specific
 functions.

 Advanced commands for debugging Z80 software (eliminating the
 need for DDT.COM), including:

 Illegal Opcode control (treat 'em as FAULTs or NOPs).

 BDOS function trace.

 Instruction TRACE and NOTRACE, with Z80 PC traceback.

Breakpoints.

Dump CP/M memory in HEX and ASCII.

 Patch CP/M memory in HEX, decimal, binary, ASCII characters,

or ASCII strings.

 Symbolic labels may be defined and used instead of CP/M addresses.

 Z80 register and flag display and alter, including
 alternate regs/flags and IFF1, IFF2, IMF, I, R regs.

 CP/M memory move and find.

Intel HEX files can be properly read into CP/M memory,
as well as created from CP/M memory.

 An "emulated terminal" for full-screen CP/M applications.

 A full disassembler much like Ward Christensen's RESOURCE,
 built right in, with:

 Symbolic addresses.

 Control breakpoints for Instructions, Bytes (DB), Words (DW),

Table of Words (DW), and Storage (DS).

 Automatic label generation.

 Comments associated with Z80 addresses.

 Online help summaries.

 SUBMIT file support (built right in - no need for SUBMIT.COM).

 Access to all PCDOS programs and commands.

CP/M software reads and writes PCDOS files, and can be
 organized with PCDOS directory structure (instead of
 using CP/M's "user number" idea).

 Z80MU (from now on called "the Emulator") can be used quite transpar-
 ently to run CP/M applications on the IBM PC. It contains many advanced
 commands not found in CP/M, but there's no law that says that you have
 to use 'em all. By ignoring the advanced commands, you can run the
 emulated CP/M all day long and you'll swear that you're running CP/M.

 You can also take advantage of the advanced commands and features, and
 have a user interface more powerful than that available with CP/M.

 Advanced Z80 programmers can even ignore CP/M entirely and use the
 Emulator as a generic Z80 development tool for developing device
 controllers and other non-CP/M based Z80 code.

 INTRODUCTION

 At CCS, we use the Emulator to develop things like Z80-based hard disk
 controller card software, device-switching hardware, and even a few
 boring old standard CP/M applications. We have also used it to regen-
 erate the source code for the 32K ROM in the Radio Shack Model 100
 laptop computer, to figure out how it works.

 The Emulator consists of a high-speed 8088 assembler subroutine (which
 does the actual Z80 emulation), and a 'C'-language main program which
 provides the CP/M-like interface to the user, the disassembler, the
 RESOURCE facility, and the rest of the advanced features.

 Why Did We Do It?

 At CCS, we have quite an investment in CP/M software. Most of that
 software consists of fairly esoteric software development tools, things
 that are hard to find in the IBM PC world. Furthermore, we continue to
 develop software for the Z80. The old chip just won't die, although
 nowadays it is used more in controller boards than as a primary system
 processor.

 We wanted to keep these Z80 tools, yet apply our numerous IBM PC tools
 (especially some fantastic IBM PC editors like SPF/PC) to our Z80
 development process.

 We were also keenly interested in creating source code for some object-
 only Z80 applications, with a view to converting them to 8088 assembler
 source code for re-assembly as native IBM PC programs.

 We scouted around and discovered several software packages which sup-
 posedly allowed us to run CP/M on the IBM PC. Needless to say, they
 just couldn't cut it. The Heath User's Group (HUG) emulator, 80Mate by
 Vertex, and a few similar packages were considered. We weren't impressed
 by the speed of emulation, or by the accuracy of the emulation, or by
 the user interface. What's more, we kept bumping into more and more
 people who were in the business of Z80 development, and who kept
 badgering us to solve this problem "the right way" (whatever that
 means).

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 INTRODUCTION

 How Does It Work?

 When it runs under PCDOS, the Emulator looks like this:

 +------------------------------------+
 | Z80MU 'C' main program |
 | |
 | This is what you talk to, the guy |
 | that emulates CP/M Console Command |
 | Processor. |
 | |
 +------------------------------------+
 | Z80 Emulation 8088 Assembler Code |
 | |
 | Which actually emulates the Z80 as |
 | it "executes" in the CP/M Segment. |
 | |
 +------------------------------------+
 | 64K CP/M Segment |
 | |
 | In which the Z80 code is held as |
 | it executes. The size of the |
 | Transient Program Area is 65022 |
 | bytes. |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | - - - - - - - - - - - - - - - - - -|
 | BDOS and BIOS hooks |
 | |
 | Which trap CP/M BIOS and BDOS |
 | calls, so that they can be |
 | emulated. |
 | |
 +------------------------------------+

 The main program accepts the user's commands, and processes them. When
 and if it comes time to run a Z80 program, the Z80 code is loaded into
 the CP/M Segment, and the 8088 assembler code which actually emulates
 the Z80 is called to run the program there.

 As the Z80 program executes, it accesses the outside world via calls to
 the BDOS and BIOS hooks. The code that is executed for a given BDOS or

 INTRODUCTION

 BIOS function actually resides within the 8088 assembler code that
 emulates the Z80.

 What Does It Require To Run?

 The Emulator runs on the IBM PC under PCDOS 2.x or above. The Emulator
 itself is about 93K in size. The first thing that it does when it runs
 is allocate 64K to be used as CP/M memory (the "CP/M Segment").

 So you had better have 93K + 64K = 157K available when you run the
 Emulator. Note that the amount of memory required may vary as improved
 versions of the Emulator are released.

 Some CP/M applications expect to control the screen cursor by sending
 control characters through the BDOS. For these programs, you may want
 to have the PCDOS ANSI.SYS device driver loaded via your CONFIG.SYS
 file.

 How Accurate an Emulation Is It?

 There are two aspects to the accuracy of the Emulator:

 1) How accurately it emulates the Z80
 2) How accurately it emulates CP/M

 The Emulator emulates the Z80 almost perfectly, even down to an exact
 emulation of all six flag bits in the Flags Register. Even the untest-
 able Half-carry and Add/Subtract flag bits are emulated. For faster
 execution, the Emulator ignores the two unused bits in the Flags
 Register, so these will not act exactly as they would on a real Z80.

 Input/Output instructions (the IN's and OUT's) perform everything except
 the actual strobe of the I/O data lines. You can't very well have Z80
 code accessing I/O addresses that mean something entirely different on
 the IBM PC. So the actual data transfer has been disabled. But any
 setup, auto-increment of registers, and flag effects have been emulated
 even for the IN's and OUT's.

 The Z80 HALT instruction is used as a hook to return control to the main
 'C' program, and as a call to the emulated CP/M BIOS and BDOS.

 When it came to emulating CP/M 2.2, we took a less precise approach. We
 weren't interested in emulating the limitations of CP/M. We wanted to
 include many of the benefits of PCDOS. And we wanted to add many more
 "builtin" commands than were available with CP/M. We also demanded the
 largest possible TPA (Transient Program Area - the amount of memory

 INTRODUCTION

 available to be used by a Z80 program). Yet we wanted to keep the
 interface very close to CP/M's.

 So we decided to support "standard" CP/M applications, ones that stood a
 good chance of executing on a wide variety of CP/M systems and thus were
 hardware independent.

 This we have succeeded in doing.

 The user interface is just like CP/M's, so that someone used to CP/M
 will feel right at home.

 The program interface (via the BIOS and BDOS) is exactly the same as
 CP/M's. There are some BIOS and BDOS functions that are hardware-
 specific. These are in general not supported. The differences are
 explained in a later section.

 The handling of commands and command arguments (the command "tail")
 appears to the Z80 application exactly as it would on a real CP/M
 system. The default FCB at 5Ch is formatted with the filename implied by
 the first command-line argument, and the FCB at 6Ch with the second
 argument. The byte at 80h is set to the number of characters in the
 command tail, and is followed by an uppercase version of the command
 tail as typed by the user.

 We have achieved a TPA size of 65022 bytes. This is more than is
 available on almost all "real" CP/M systems, including the Baby Blue Z80
 add-on board (for the IBM PC) from MicroLog.

 We have also built a terminal emulator into the Emulator, since many
 CP/M applications (especially those doing full-screen editing) assume
 that they are being run from an ASCII terminal.

 All in all, the compatability of the Emulator is so good that we have
 been able to move almost all of our CP/M applications to the Emulator,
 and to have them run perfectly (although a tad slow).

 Here is a partial list of CP/M applications that we have tested with the
 Emulator and found to run as they do on a "real" CP/M system:

 ASM
 LOAD
 ED
 DDT
 DUMP
 PIP
 M80
 L80
 LIB

 INTRODUCTION

 MBASIC
 LASM
 MAC
 dBase II
 WORDSTAR 3.0 & 3.3 with MAILMERGE (but not SPELSTAR!)
 PMATE-80 rev. 3.02
 Software Toolworks 'C' compiler
 Telecon 'C' compiler
 Chang Labs' MemoPlan

 This is more a list of the software that we happened to have on hand
 than an exhaustive list of software that will run under the Emulator.

 What WON'T Run Under the Emulator?

 There are some CP/M programs (like STAT.COM provided by Digital Re-
 search) which are hardware-specific. These cannot be run under the
 Emulator, or must be run "carefully" to avoid functions that look to the
 hardware. STAT, for instance, starts out by interrogating the physical
 layout of the diskette. Since this is unsupported under the Emulator,
 STAT is immediately aborted by the Emulator.

 WORDSTAR's SPELSTAR won't work, either. It tries to call CP/M's CCP
 directly. It's really quite sad. It goes to a lot of work to calculate
 just where in Z80 memory the CCP is, relative to the BDOS address held
 in location 0005h. Then it calls that address. Unfortunately, there's
 nothing there...

 How Fast Is It?

 Aye, there's the rub.

 Because the Z80 used by the Emulator is an imaginary one whose instruc-
 tions must be emulated in software, the effective speed of a Z80 program
 is considerably less than the speed of the IBM PC. One 12-cycle Z80
 instruction, for example, may take from 47 to over 100 IBM PC cycles
 (depending on the instruction, its addressing mode, etc).

 For detail on the effective speed of the emulated Z80 and what it means,
 see the description of the "speed?" and "howfast?" Builtin Commands
 later in this Guide.

 We have not found the speed of the emulated Z80 to be entirely accept-
 able. Z80MU is the fastest software-based true Z80 emulator available
 today for the IBM PC. Yet we would like to have something that would run

 INTRODUCTION

 the standard CP/M utilities on an IBM PC at an effective cpu speed of at
 least 1 MegaHertz, and still have all of the subtleties (like flag
 updating) performed with 100% accuracy.

 One solution is to run the Emulator on an IBM PC/AT with a hard disk.
 This is perhaps the best solution, but doesn't help those who don't have
 access to an AT.

 An alternative solution is to use the NEC V20 processor chip in the IBM
 PC, and get rid of the Intel 8088. The NEC V20 is a tad faster than the
 8088. More importantly, it performs full-speed hardware emulation of the
 Intel 8080 chip. Many CP/M utilities do not use the extended instruc-
 tions offered by the Z80, and will run just fine on an 8080 chip. Such a
 hardware-based emulator would offer superior speed. It would, however,
 be limited to 8080 operation.

 We are developing such an emulator. There is no firm release date.

 In the meantime, you should equip your IBM PC with a NEC V20 chip to
 speed things up. We paid $16 apiece for ours, and there is no more cost-
 effective hardware upgrade for the IBM PC! See the ads in back of BYTE
 magazine for sources and prices.

 How Do I Get My CP/M Programs Into The IBM PC?

 Assuming that you want to emulate some CP/M applications on the IBM PC,
 the first realization is that these CP/M files don't already reside on
 the PC. What's more, they currently exist (by definition) on disks
 formatted for CP/M, not for the IBM PC. So they can't be read by a
 vanilla IBM PC using PCDOS. They must be copied to standard PCDOS disk
 files.

 We have used several approaches, all with excellent results.

 The first approach is to transfer the CP/M files straight from the CP/M
 disks to PCDOS disks using a utility that runs on the IBM PC and is
 capable of reading the foreign CP/M format. Such utilities include:

 CONVERT (from Selfware, Inc. Fairfax, VA)
 XENOCOPY (from Vertex Systems, Inc. L.A., Calif)

 This approach is nice, when it works. The major disadvantages are:

 Only certain CP/M formats are recognized by each of these
 utilities. Apple][and NorthStar Horizon CP/M disks, for

 INTRODUCTION

 example, cannot be read on the IBM PC without special
 hardware.

 You must have the CP/M disks at hand.

 Another approach is to transfer the CP/M files to the IBM PC via a
 communications line. This is Joan Riff's personal favorite. If the
 CP/M system is at hand, then the two machines are direct-connected and
 cranked up to 9600 baud. If the CP/M system is not handy, then the
 transfer is made over the phone at whatever speeds the respective modems
 can handle. In either case, the CP/M system running BYE and XMODEM is
 controlled by the IBM PC running Crosstalk VI version 3.5 (from Micro-
 Stuf) and Joan Riff's excellent XMODEM (with CRC) Crosstalk RUN command.

 When direct connected, files really fly across at 9600 baud.

 The major advantages of this approach are:

 Who cares what the CP/M disk format is? If the CP/M system can
 read its own files, then we can get them. This works very
 well when transferring Apple][and NorthStar Horizon
 CP/M files.

 Public Domain CP/M software can be gathered just by dialing
 into a CP/M Bulletin Board or RCPM system. You need never
 know what hardware system is on the other end.

 CP/M and PCDOS files are similar enough that we have never had to alter
 a file that was transferred using either of the above two approaches.
 We just download the files to the IBM PC and run 'em under the Emulator.

 The biggest problem is remembering which files are PCDOS files and
 which are CP/M files. If you transfer a CP/M file called DUMP.COM, for
 example, from a CP/M system to the IBM PC's disk, you really do want to
 remember that it is a CP/M file (to be run with the Emulator) and not an
 IBM PC .COM file. If you accidentally invoke DUMP.COM from PCDOS, you
 will be unpleasantly surprised. The CP/M DUMP.COM file contains Z80
 opcodes, which will be executed by the IBM PC as 8088 opcodes. Time to
 reach for the Big Red Switch...

 You must run such CP/M command (.COM) files under the Emulator!

 At CCS, we keep things straight by storing CP/M files under separate
 PCDOS directories. The "Z80PATH" environment string (explained else-
 where) makes this particularly convenient.

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 INTRODUCTION

 The saving grace to this CP/M-to-PCDOS conversion is that it needs to be
 done only once for a given file. We spent quite a while transferring 10
 megabytes of CP/M files to the IBM PC. But we need never do it again.
 Now we just run everything on the IBM PC.

 How Do I Run It?

 The Emulator is just another PCDOS program. There are no arguments to
 give it. There is no syntax. Just type

 Z80MU

 and bingo! - you're in CP/M.

 To make things easier, you may want to copy Z80MU.EXE to one of your
 PCDOS "PATH" directories (if you have any). If you don't have any PATH
 directories set up, then just insert the floppy that holds Z80MU, start
 the program, and then remove the floppy. You don't need it until you
 want to run the Emulator again.

 The next section ("The PCDOS Environment") describes the PCDOS environ-
 ment that applies to the Emulator. You may want to study it before you
 run the thing.

 What Can Go Wrong?

 The Emulator is as safe a program as ever you'll find on the IBM PC.
 You will probably never experience any problem with it.

 There is one important thing to watch out for, however:

 If the Emulator itself is ever aborted, then you should
 immediately reboot your IBM PC.

 Why? Because the Emulator must trap the IBM PC's BREAK interrupt. When
 the Emulator returns to PCDOS (via the "exit" command), it restores this
 interrupt the way it was before. If the Emulator never gets a chance to
 exit gracefully, then it never gets a chance to restore this interrupt.
 The thing is left pointing to now-dead code somewhere in the IBM PC's
 memory. This is bad news for you, and good news for that big red switch
 on the side of your PC...

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 INTRODUCTION

 Why might the Emulator abort? Well, there is always the possibility of
 an Emulator bug that we haven't found. But the most likely reason is a
 disk error that results in the familiar message:

 Abort, Retry, Ignore?

 If you select Abort, then you've just aborted the Emulator and left the
 BREAK interrupt in limbo. So reboot to be safe.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 THE PCDOS ENVIRONMENT

 THE PCDOS ENVIRONMENT

 The Z80 Emulator runs as a normal application program under PCDOS
 (version 2.0 and above). There are a few things that you should keep in
 mind, in order to get the most out of the Emulator.

 PCDOS's use of COMMAND.COM

 Certain Emulator commands ("dir", "!xxxxxx", etc) are handled by calling
 PCDOS to perform the associated operation. The first thing that PCDOS
 does when called in this way is reload its COMMAND.COM file from disk.
 To speed things up, you should make sure that PCDOS's COMMAND.COM file
 is in a RAMdisk, or on a hard disk. You can tell PCDOS where to find
 COMMAND.COM by using the "SET COMSPEC=" command in your AUTOEXEC.BAT
 file.

 Certain versions of PCDOS (2.0 and 2.1, and maybe others) have trouble
 obeying the "COMSPEC=" command. They try to reload COMMAND.COM from the
 boot disk, regardless of the current "COMSPEC=" parameter. If you use
 one of these versions of PCDOS, then you may avoid problems by keeping
 COMMAND.COM always available on the boot drive. Alternatively, you may
 apply one of the public domain COMZAP patches to fix your copy of PCDOS.

 The "Z80PATH=" Environment String

 The Emulator has a facility which is equivalent to the PCDOS "PATH"
 command. It allows you to tell the Emulator where to look for Z80
 command (.COM) files.

 This facility is implemented by a new PCDOS environment string, called
 "Z80PATH". This string is a list of fully-qualified names of directories
 which are to be searched when the Emulator is looking for a .COM file to
 load and run. The various directory names must be separated with
 semicolon (";") characters, as follows:

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 THE PCDOS ENVIRONMENT

 SET Z80PATH=c:\cpm;c:\z80\mystuff;c:\

 This example tells the Emulator to search for Z80 programs first in the
 directory "CPM" on drive C:, and then (if not found there) in the
 directory "Z80\MYSTUFF" on drive C:, and finally (if still not found) in
 the root directory of drive C:.

 A Z80PATH string should be defined in your AUTOEXEC.BAT file, so that
 it is always present when you run the Emulator.

 The trailing "\" character of each directory name is optional. If it is
 absent, a "\" character is automatically applied to the directory name
 before the name is used in the search.

 The Z80PATH search order is used whenever an "unqualified" program name
 is used as a command to the Emulator. An "unqualified" program name is a
 legal filename (up to 8 characters) which:

 1) has no drive ID on the front of it (no ":" character), and
 2) has no directory names imbedded in it (no "\" characters), and
 3) is not the name of an Emulator Builtin Command.

 For example, let's say that you give the following command to the
 Emulator:

 Z80 A>asm dump.aaz

 The Emulator first checks to see if the command ("ASM") is one that it
 recognizes - a so-called Builtin Command (see the "Builtin Commands"
 section). If it is not, then the Emulator acts just like CP/M and
 attaches a .COM extension to the command, yielding "ASM.COM". It then
 looks in the current PCDOS directory on the current disk (in this case,
 drive A:) for a file by the name of ASM.COM. If it finds such a file,
 then it loads it into the CP/M Segment and runs it.

 If the file is not found on the current drive, then the Emulator
 searches the various Z80PATH directories, looking for a file with the
 right name (ASM.COM). The directories are searched in the order that
 they appear in the Z80PATH string. The first ASM.COM file that is found
 is the one loaded and run.

 If there is no Z80PATH string defined in the PCDOS environment, then the
 search stops with the current disk drive's current PCDOS directory.

 If no matching filename is found after all of this, then the Emulator
 echos the command line

 asm?

 THE PCDOS ENVIRONMENT

 indicating that it doesn't know what you mean.

 Note that no search takes place if the command is "qualified". A
 "qualified" command includes a drive ID or a pathname, such as:

 Z80 A>b:asm dump.aaz
 Z80 A>\bin\asm dump.aaz

 In such a case, the Emulator tries only once to open the Z80 .COM file,
 using the exact name given. If such a file cannot be found, then the
 command fails as mentioned above.

 The AUTOEXEC.Z80 File

 When the Emulator first starts up, it automatically executes the
 following command:

 Z80 A>SUBMIT AUTOEXEC.Z80

 If there is no file by the name of AUTOEXEC.Z80 in the current directory
 when the Emulator is run, then an error message is displayed and the
 Emulator just waits for you to enter commands from the keyboard.

 If there is such a file, however, then the Emulator reads its commands
 from that file, until EOF. See the "submit" builtin command for more
 details about submit files.

 This is an easy way to automate the Emulator. At CCS, we use a different
 AUTOEXEC.Z80 file in each work directory in order to set up the parti-
 cular environment that we want to work with. The AUTOEXEC.Z80 file
 within the Radio Shack Model 100 directory, for example, automatically
 reads in the 64K Model 100 image from disk ("read 0 model100.mem"), and
 the disassembler control file ("control read model100.ctl"). It also
 sets up the disassembler format that we want ("list include A O"). So
 when we start up the Emulator while within that directory, the thing
 comes up ready to do real work.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 THE PCDOS ENVIRONMENT

 I/O Redirection With The Emulator

 The Emulator reads its commands from the standard input as defined by
 PCDOS. It writes its output to the standard output that is defined by
 PCDOS. So regular old PCDOS I/O redirection can be used when you start
 the Emulator.

 For example, the following PCDOS command can be used to run the Emulator
 and capture all Emulator output to file OUTPUT.DOC:

 Z80MU >OUTPUT.DOC

 You may also append output to an existing file with:

 Z80MU >>OUTPUT.DOC

 And the following can be used to have the Emulator read all of its
 commands from the file INPUT.BAT:

 Z80MU <INPUT.BAT

 You may combine input and output redirection, as follows:

 Z80MU <INPUT.BAT >OUTPUT.DOC

 This is perfect for automating the Emulator. Some of the samples
 displayed later in this document were captured by redirecting the
 Emulator's output to a file, and then editing that file into this
 document.

 There are a few things to bear in mind, however.

 First of all, remember that there are several parts of the Emulator:

 The main program, which reads your commands and in general
 acts like the CP/M CCP. It does all I/O via PCDOS, so it is
 subject to I/O redirection.

 The actual Z80 emulator, which does no I/O at all.

 The CP/M BIOS emulator. It does I/O at the IBM PC ROM BIOS
 level, so PCDOS never sees what's going on. CP/M BIOS terminal
 I/O goes through the emulated "terminal" inside the Emulator,
 and then straight to the IBM PC screen. So I/O redirection
 does not apply there.

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 THE PCDOS ENVIRONMENT

 The CP/M BDOS emulator. The BDOS emulator does its I/O via PCDOS,
 so I/O redirection does apply to it, and to any Z80 programs that
 use BDOS functions for I/O.

 Now the question arises: Will my CP/M application obey any I/O redirec-
 tion that I specify when I run the Emulator?

 The answer, of course, depends on your application.

 Most "standard" CP/M applications do their I/O via BDOS functions. So
 these will obey your I/O redirection.

 Full-screen editors, in general, use the BIOS instead of the BDOS, for a
 lot of very good reasons. So these will automatically be exempt from
 your I/O redirection.

 When constructing a file to be read via input redirection, remember to
 include all characters that are to be read either by the Emulator itself
 or by the CP/M application. This usually means that your input file will
 be a jumbled mix of Emulator and application input.

 Let's say, for example, that you have a CP/M application named TEST.COM
 that asks for your name, prints some silly message based upon your name,
 and then exits back to CP/M. A complete input file to execute that
 program would look like this:

 test
 Joan Riff
 exit

 If this text is saved on a file called AUTONAME, we can run the Emula-
 tor, tell it to run TEST.COM, answer TEST's question, and then exit the
 Emulator back to PCDOS by entering the following PCDOS command:

 Z80MU <AUTONAME

 Please remember that all Emulator input and/or all Emulator output is
 redirected at once. If you redirect the output only, meaning to enter
 commands from the keyboard, don't be real surprised if you can't see any
 of the Emulator's prompts. They are being written to the redirected
 output file, and not to the screen.

 NOTE: When you redirect output to a disk file, your input
 keypresses are supposed to be sent to the output file (not to
 the screen). Some versions of PCDOS, however, contain a bug

 THE PCDOS ENVIRONMENT

 that causes your keypresses to appear on the screen instead.
 We have seen public domain patches to fix this bug floating
 around the Bulletin Boards, but can't vouch for any of them.

 ALSO: Input that comes from Input I/O Redirection is not
 echoed, so you won't see it anywhere. Input from submit
 files, however, IS echoed.

 Using The Keyboard

 As mentioned previously, the Emulator reads its input from the standard
 input as defined by PCDOS. So if you don't redirect the input to the
 Emulator, then input comes from the keyboard.

 The Emulator could have done its own direct keyboard and screen I/O.
 This would speed things up considerably. PCDOS is notoriously slow when
 it comes to writing to the screen.

 We decided, however, not to circumvent PCDOS when writing to the screen
 and reading from the keyboard. The Emulator is slower as a result. But
 we gain a few conveniences as a result:

 We achieve something closer to true CP/M emulation, 'cause
 PCDOS automatically handles ^P and ^S/^Q in a manner close to
 CP/M's handling of them.

 We get automatic I/O redirection.

 We get PCDOS expanding macro keys and interpreting function
 keys.

 The F3 key, for instance, can still be used to repeat the last command
 entered to the Emulator. The ESC key cancels the current input line. And
 F1 recreates the last command one character at a time. Other PCDOS
 keyboard conventions (like Ctrl-NumLock, Ctrl-PrtSc, and so on) are also
 handled by PCDOS in a way that we're all used to.

 The addition of keyboard enhancers like CED and Sidekick can confuse
 things, so that the function keys don't act quite right. You'll just
 have to experiment with it.

 If you want to copy screen output to the printer, then press ^P or
 Ctrl-PrtSc. A second press will turn printer echo off. Remember that
 such PCDOS redirection applies to Emulator output (like dumps, disassem-
 blies, etc) as well as to the output of any CP/M applications being run
 under the Emulator that use BDOS functions for output.

 THE PCDOS ENVIRONMENT

 If text is scrolling off of the screen too fast to read (not real
 likely, with PCDOS being as slow as it is), you can pause and restart it
 with ^S/^Q, or Ctrl-NumLock.

 The actions of ^S/^Q, ^P and Ctrl-PrtSc may vary, depending on the
 particular CP/M application being run. CP/M's BDOS function number 6
 (Direct Console I/O), for example, is handled by CP/M without it
 checking for ^S or ^P. The Emulator mimics this action.

 Filenames!

 CP/M filenames may contain certain characters that PCDOS objects to. In
 general, don't use the "\" or "/" characters in filenames, or the I/O
 redirection characters ">" and "<", and so on.

 And watch out for PCDOS device names that are perfectly innocent
 filenames under CP/M. Things like "CON.ASM" will fool you.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 THE CP/M ENVIRONMENT

 THE CP/M ENVIRONMENT

 This section describes the environment set up by the Emulator, under
 which your Z80 programs will run.

 Emulated Terminal

 If a Z80 program does character I/O by invoking CP/M BDOS functions (not
 BIOS calls), then its input and output come from PCDOS, and this section
 does not apply.

 When a Z80 program does character I/O by calling the emulated CP/M BIOS
 (not using BDOS functions, but BIOS calls), then it is communicating
 with an imaginary, emulated ASCII terminal which is maintained by the
 Emulator. The Emulator interprets ASCII codes that are sent to this
 "terminal", and translates them into appropriate calls to the IBM ROM to
 control the IBM's display.

 Most ASCII characters that are sent to the emulated "terminal" are
 displayable characters - letters, numbers, and so on. They appear on the
 screen for the user to read. Other ASCII characters - called "control
 sequences" - are used not to display anything, but to cause the "ter-
 minal" to perform special functions like clearing the screen, switching
 between high- and low-intensity, and so on.

 The builtin "terminal" obeys VT52 control sequences, which are the
 same ones used by the Heath/Zenith H19 and H89 machines when in ZDS
 mode. They are as follows:

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 THE CP/M ENVIRONMENT

 ESC H Homes cursor

 ESC C Advances cursor 1 char to right. Stays on same line.

 ESC D Backspaces cursor one char to left. Stays on same line.

 ESC B Moves cursor down 1 line, staying in same column. Screen
 is scrolled if necessary.

 ESC A Moves cursor up 1 line, staying in same column. No
 scrolling occurs.

 ESC I (uppercase letter "I", HEX 049h) Moves cursor up 1 line,
 staying in same column. Scrolling occurs if cursor was on
 top line.

 ESC n Causes current cursor position to be returned via
 emulated "keyboard" as ESC Y line# column#. This control
 sequence is ignored (not supported) by the Emulator.

 ESC j Saves cursor position for later restore via ESC k.

 ESC k Returns cursor to position that was saved via ESC j.

 ESC Y line# column# Direct cursor addressing sequence. Screen
 lines are numbered 1 to 25. Screen columns are numbered 1
 to 80. Line# and column# args are obtained by adding 31
 (01Fh) to the desired line or column number. Alternative-
 ly, you may think of lines as being numbered from 0 to
 24, columns from 0 to 79, and the offset to add to each
 being 32 (020h).

 To position to line 5, column 10, for example, the
 following is sent:

 ESC Y $)

 which is represented in HEX as 01Bh 059h 024h 029H and in
 decimal as 27 89 36 41. Note that the line# arg is
 obtained by 5 + 31 = 36 (024h), and the column# arg by 10
 + 31 = 41 (029h).

 Line# or column# args less than 32 default to 32 (i.e. -
 to line or column 1). An arg value that is too large
 defaults to the max legal value (25 for line, 80 for
 column).

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 THE CP/M ENVIRONMENT

 ESC F Erases the entire screen and homes the cursor.

 ESC b Erases from the start of the screen to the cursor,
 including the cursor position.

 ESC J Erases from the cursor to the end of the screen (inclu-
 ding the cursor position).

 ESC l (lowercase letter "L", HEX 06Ch) Erases the entire line
 that the cursor is on, positions the cursor to the left
 edge of that line.

 ESC o (lowercase letter "O", HEX 06Fh) Erases from the
 beginning of the line to the cursor (including the cursor
 position).

 ESC K Erases from the cursor to the end of the line (including
 the cursor position).

 ESC L Inserts a blank line before the line that the cursor is
 on, shifts following lines (including the cursor line)
 down to make room. Cursor is moved to start of new blank
 line.

 ESC M Deletes the line that the cursor is on, scrolls follow-
 ing lines up to fill its place. Cursor moves to left edge
 of its line.

 ESC N Deletes the character under the cursor, shifts remaining
 text to left to cover it up.

 ESC @ (At-sign character, HEX 040h) Enters Insert Mode.
 Displayed characters cause others on the same line to be
 moved right to make room. This can be pretty pokey,
 thanks to the IBM ROM BIOS!

 ESC O (uppercase letter "O", HEX 04Fh) Exits Insert Mode.

 ESC p Enters Reverse Video or Highlight mode.

 ESC q Exits Reverse Video or Highlight mode.

 BEL (decimal 7) Beeps bell.

 BS (decimal 8) Backspaces cursor one character position.

 HT (decimal 9) Tabs cursor to next mod-8 column boundary

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 THE CP/M ENVIRONMENT

 LF (decimal 10, HEX 0Ah) Advances cursor to next line, same
 column.

 FF (decimal 12, HEX 0Ch) Clears screen and homes cursor.

 CR (decimal 13, HEX 0Dh) Returns cursor to start of current
 line.

 The other standard ASCII control characters (below 032 or 20h) and those
 from 128 (80h) through 255 (FFh) display various graphic symbols. See
 the IBM Tech Ref Manual for details.

 The emulated VT52 "terminal" also translates input from the IBM key-
 board. Most keypresses are returned to the Z80 program as single ASCII
 characters. The "extended" codes that are generated by IBM function
 keys, arrow keys, ALT keys, and so on, are translated into 2-byte
 keyboard sequences as follows:

 The first byte is an ESCAPE character (Decimal 027, HEX 1Bh).

 The second byte is the keyboard scan code, as defined in the
 IBM Tech Ref Manual.

 Additionally, the NUL extended code (CTRL-@) is translated into a
 single ASCII character (Decimal 000).

 For example, assume that the user presses the PgUp key on the IBM
 keyboard. The next time that the Z80 program calls the CP/M BIOS to read
 a keypress from the "terminal", an ESCAPE character will be returned.
 The time after that, a Decimal 073 (HEX 49h) will be returned. This is
 the scan code for the PgUp key.

 The above information may be used to configure particular Z80 applica-
 tions for use with the Emulator's "terminal". Remember that this
 emulated "terminal" only appears at the CP/M BIOS interface. Applica-
 tions that do I/O via BDOS functions (which includes most of the
 standard CP/M utilities) do not see this behavior.

 WORDSTAR, dBase II, Target Plannercalc and PMATE, for example, do at
 least some of their terminal I/O via the CP/M BIOS, so they must be
 configured for the particular terminal being used. Refer to the above
 information when installing such applications for use under the Emula-
 tor, using this emulated VT52 "terminal". Please bear in mind, however,
 that things can get very confusing when one application (like dBase II)

 THE CP/M ENVIRONMENT

 does terminal I/O via both the BIOS and the BDOS. Just experiment until
 you get something useful.

 NOTE: This emulated terminal facility may be enabled and
 disabled via the "terminal" builtin command, which is des-
 cribed in the "Builtin Commands" section.

 ^C and BREAK Handling

 The ^C (Ctrl-C) and BREAK (Ctrl-Scroll Lock) keys are handled in a
 special way on the IBM PC. Under normal circumstances, these keypresses
 are trapped by PCDOS and cause the executing PCDOS program (in this
 case, the Emulator) to be aborted.

 This is undesirable.

 Additionally, CP/M includes an important assumption, to wit: ^C is a
 keypress like any other, and must be passed through all the way to the
 Z80 program for processing. Several standard CP/M programs (PIP.COM,
 M80.COM, WORDSTAR, etc) use ^C as a command, and must not be aborted
 when it is typed.

 For this reason, the Emulator traps ^C and BREAK keypresses. It decides
 what to do with them as follows:

 When not running a Z80 program (i.e. - when the Emulator is
 accepting commands), the BREAK key does nothing and the ^C
 keypress does various things depending on the mood of PCDOS.

 When executing a Z80 program, pressing ^C causes a ^C character
 (Decimal 003) to be queued as keyboard input. Pressing BREAK
 causes the Z80 to be stopped (with an appropriate message),
 and a return to the Emulator awaiting your command.

 NOTE: If the Z80 program is in the process of reading a
 line of keyboard input when you press BREAK, then you
 may have to press RETURN (to terminate that read) before
 the BREAK will be recognized.

 When the Emulator stops ("aborts") a Z80 program due to a BREAK key-
 press, it displays a message to that effect. It suspends the Z80 in
 perfect order, maintaining all registers, flags, etc. It then accepts
 Emulator commands.

 At this point you may inspect registers, run another Z80 program, or

 THE CP/M ENVIRONMENT

 whatever. You may also continue execution of the aborted program with
 the "go" command.

 This is a very powerful tool for debugging, which is not available with
 true (hardware) Z80 systems. You may in effect interrupt the Z80 at any
 point, actually pausing it between Z80 instructions.

 This also maintains compatability with existing CP/M programs that want
 to read the ^C character. To exit PIP, for example, you need only press
 ^C and then RETURN. This ^C is passed to PIP, who interprets it as a
 request to exit the program.

 Note that RETURN must be pressed after the ^C in some cases (like when
 entering a command line into PIP). This is one area of PCDOS-CP/M
 incompatability, for which Joan Riff offers her apologies. A Z80
 program (like PIP) that requests a line of input from CP/M won't see the
 ^C until the entire line is terminated with RETURN. A Z80 program that
 asks for one character at a time, however, will see the ^C immediately.

 NOTE: When running PCDOS commands like type, dir, and so on,
 the BREAK key is unavailable to you. If you want to interrupt
 the output from such programs that are run "underneath" the
 Emulator, you will have to use the ^C key.

 Common PCDOS and CP/M File System

 The Emulator goes to great lengths to allow CP/M programs to read and
 write PCDOS files. Thus the PCDOS file system serves as a common
 environment for both PCDOS and CP/M files. This allows you to use your
 favorite IBM PC editor, for example, to edit source files that are then
 compiled within CP/M (using the Emulator) with ASM.COM, M80.COM,
 F80.COM, or whatever.

 CP/M's "User Number" concept, however, is primitive compared to the
 directory structure available with PCDOS. So although the emulated BDOS
 supports the setting of a user number, the user number is ignored by the
 Emulator when it comes time to actually access files.

 Likewise, the concept of a Read-Only disk drive is not necessary under
 the Emulator. And the fatal CP/M flaw that crops up when you change
 disks and forget to type ^C to Warm Boot the system has been virtually
 eliminated by PCDOS.

 CP/M and its CCP (or lack of them)

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 THE CP/M ENVIRONMENT

 One thing that we did in order to achieve such a large TPA size (65022
 bytes) and such fast emulation was remove the console command part of
 CP/M (the Console Command Processor, or CCP) from the CP/M Segment. In
 fact, we did away with CP/M entirely.

 The CCP is the part of a normal CP/M system which accepts commands from
 the user and processes them. The Digital Research CCP that comes with
 CP/M 2.2 is fairly limited in its power.

 In the Emulator, it is the main Z80MU 'C'-language program which
 contains all of the functions of CP/M's CCP, and does a whole lot more.
 In fact, it is this program which emulates all of CP/M (with a lot of
 help from PCDOS).

 For this reason, there are certain CP/M enhancements (like ZCPR) which
 will have a whole lot of trouble working under the Emulator. The good
 news is that they are largely irrelevant under the Emulator, as the
 Emulator itself provides a powerful increase in console power even
 without ZCPR.

 So if you have dreams of running ZCPR (or any CP/M enhancement which
 counts on patching CP/M), you ought to forget about it. When using the
 Emulator, there's no CP/M for such programs to patch. It's all fakeware,
 invisible to Z80 programs.

 Stick with CP/M programs which interact with the outside world via the
 standard, unmodified BIOS and BDOS interfaces.

 CP/M 2.2 BIOS and BDOS Emulation

 The Emulator tries very hard to look to Z80 programs like CP/M version
 2.2, at least in terms of its BIOS calls and BDOS support functions.
 Most Z80 programs that are run under the Emulator will have no idea that
 they aren't being run on a Z80 machine running Digital Research's CP/M.

 There are some hardware-specific aspects of CP/M, however, that make no
 sense on a PCDOS system.

 Many CP/M BIOS calls, for example, deal with the physical layout and
 operation of the floppy disk. Some of these are ignored. Others cause a
 fault of the Z80 program, with the display of a message to the effect
 that the program invoked an unsupported BIOS call.

 There are a few BDOS functions which likewise are irrelevant, and which
 cause the Z80 program to be aborted.

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 THE CP/M ENVIRONMENT

 The following is a list of the various BIOS calls that are supported by
 CP/M 2.2, and their effects under the Emulator. Calls that are marked
 "unsupported" cause the Z80 program to be aborted.

 The addresses listed are absolute addresses within the CP/M Segment.
 Note that when the CP/M segment is Cold Booted, CP/M's location zero is
 set to JMP BIOS+3 (FF03h - the Warm Boot vector). The only safe way for
 a Z80 program to locate this BIOS jump table in any CP/M system (not
 just the Emulator) is to look at address 0001 within CP/M's memory.

 BIOS
 Address

 FF00h Cold Start CP/M segment
 FF03h Warm Start CP/M segment
 FF06h Set A-reg to FFh if Emulated VT52 Terminal has keypress
 to be read, 00h if not
 FF09h Get keypress from Emulated VT52 Terminal to A-reg, via
 IBM's ROM BIOS
 FF0Ch Output C-reg to Emulated VT52 Terminal via IBM's ROM BIOS
 FF0Fh Output C-reg to LPT1: via IBM's ROM BIOS
 FF12h Output C-reg to COM1: via IBM's ROM BIOS
 FF15h Get char from COM1: to A-reg via IBM's ROM BIOS
 FF18h Home Disk (unsupported)
 FF1Bh Select Disk (unsupported)
 FF1Eh Set Track (unsupported)
 FF21h Set Sector (unsupported)
 FF24h Set DMA address (unsupported)
 FF27h Read Sector (unsupported)
 FF2Ah Write Sector (unsupported)
 FF2Dh Set A-reg to FFh if LPT1: ready for output, 00h if not,
 as reported by IBM's ROM BIOS
 FF30h Sector Translate (unsupported)

 Similarly, here is a table of the various BDOS functions (in Decimal/-
 HEX), and their actions under the Emulator. Note that a CP/M BDOS
 function is invoked by loading the function number into C-reg, and
 doing a CALL 0005h. See standard CP/M documentation for detailed
 calling conventions.

 BDOS
 Function

 00/00h Warm Boot. Returns to accept more Emulator commands. Does
 not alter memory in the CP/M Segment.
 01/01h Read char from PCDOS standard input to A-reg.
 02/02h Send E-reg to PCDOS standard output.

 THE CP/M ENVIRONMENT

 03/03h Read char from PCDOS AUX: device into A-reg.
 04/04h Send E-reg to PCDOS AUX: device
 05/05h Send E-reg to PCDOS PRN device
 06/06h If E-reg on entry = FFh, then return in A-reg next char
 from PCDOS standard input, or 00h if none available
 at this instant.
 If E-reg on entry <> FFh, then send E-reg to PCDOS
 standard output.
 07/07h Get IOBYTE to A-reg.
 08/08h Store E-reg into IOBYTE.
 09/09h Output string at (DE) to PCDOS standard output.
 10/0Ah Input line from PCDOS standard input to (DE).
 11/0Bh Set A-reg to FFh if char from PCDOS standard input is
 ready to be read, or 00h if not.
 12/0Ch Return CP/M version to HL. Sets reg L to 22h (for CP/M
 version 2.2), and reg H to 00h.
 13/0Dh Reset disk system. Sets DMA to 80h. Does not change
 selected drive to A: (like CP/M does), as this is
 not necessary with PCDOS.
 14/0Eh Set default drive to E-reg.
 15/0Fh Open file whose FCB is at (DE). Sets A-reg to 00h if
 successful, else to FFh.
 16/10h Close file whose FCB is at (DE). Sets A-reg to 00h if
 successful, else to FFh.
 17/11h Search for first file that matches pattern in FCB at
 (DE). Sets A-reg to 00h if successful, else to FFh.
 18/12h Search for next file that matches last pattern used.
 Sets A-reg to 00h if successful, else to FFh.
 19/13h Delete file(s) represented by FCB is at (DE). Sets A-reg
 to 00h if successful, else to FFh.

 20/14h Read next sequential record from file whose FCB is
 at (DE). Sets A-reg to status as follows:

 0 = successful
 1 = reading unwritten data (EOF)
 FFh = PCDOS returned error # 2: "No room in DTA for
 record"

 Note that a short record is filled out by the Emulator
 with ^Z (eof) characters.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 THE CP/M ENVIRONMENT

 21/15h Write next sequential record to file whose FCB is at
 (DE). Returns status in A-reg as follows:

 0 = successful
 5 = diskette full
 6 = PCDOS returned error # 2: "No room in DTA for
 record"

 22/16h Create (and open) file whose FCB is at (DE). Sets A-reg
 to 00h if successful, else to FFh.
 23/17h Rename file(s) per special FCB at (DE). Sets A-reg to
 00h if successful, else to FFh.
 24/18h Return login vector (bitmap of known disks) to HL. Calls
 PCDOS to discover number of available drives.
 25/19h Return default drive number in A-reg.
 26/1Ah Set DMA to DE.
 27/1Bh Return allocation information (unsupported - aborts Z80
 program). See note below.
 28/1Ch Write-protect drive (ignored).
 29/1Dh Return write-protect vector (bitmap of $R/O drives) to
 HL. Sets HL to zero (nobody's write-protected).
 30/1Eh Set file attributes (ignored, but returns A-reg of 00h to
 indicate success).
 31/1Fh Return physical disk information (unsupported - aborts
 Z80 program). See note below.

 32/20h If E-reg on entry is FFh, then current user number is
 returned in A-reg.

 If E-reg on entry <> FFh, then current user number is set
 to E-reg MOD 32.

 This only updates the byte at CP/M address 4. The
 Emulator ignores this byte when accessing files.

 33/21h Read random record from file whose FCB is at (DE).
 Returns A-reg status as follows:

 0 = successful
 1 = reading unwritten data
 3 = (CP/M "Cannot close current extent" error):
 PCDOS returned error # 2: "No space in DTA for
 record"

 Note that a partial record is filled out by the Emulator
 with ^Z (eof) characters.

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 THE CP/M ENVIRONMENT

 34/22h Write random record to file whose FCB is at (DE). Returns
 A-reg status as follows:

 0 = successful
 3 = (CP/M "Cannot close current extent" error):
 PCDOS returned error # 2: "No space in DTA for
 record"
 5 = (CP/M "Directory Overflow" error): Diskette full

 35/23h Compute file size for file whose FCB is at (DE). Result
 goes into random record field of FCB.
 36/24h Set random record field per FCB at (DE).
 37/25h Reset drive (accepted but ignored)
 38/26h (unsupported - aborts Z80 program)
 39/27h (unsupported - aborts Z80 program)
 40/28h Write random record with zero fill. In the Emulator, this
 is translated to a function 34/22h (above).

 NOTE: If someone will kindly provide us with a coherent
 writeup of the disk parameter block and allocation information
 as returned by BDOS functions 31/1Fh and 27/1Bh above, then
 we will gladly emulate these functions in the next release.

 In CP/M the BDOS routines call the BIOS routines. This is not true in
 the Emulator. The Emulator's BDOS functions in general invoke the
 corresponding PCDOS functions, and the Emulator's BIOS routines call the
 IBM PC ROM BIOS routines.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 EMULATOR BUILTIN COMMANDS

 BUILTIN COMMANDS

 This section describes those commands that are recognized and acted
 upon by the Emulator itself. Such commands do not involve a search of
 the disk for a corresponding .COM file, since the Emulator recognizes
 them as special commands which are to be handled within the Emulator
 itself. This process is roughly equivalent to the handling of CP/M's CCP
 commands.

 Command Name Conflicts

 You may have a .COM (Z80 command) file that has the same name as one of
 these Builtin Commands. How do you tell the Emulator to run your .COM
 file, instead of doing its corresponding Builtin Command? All that you
 have to do is convince the Emulator that your command is indeed a disk
 file. This can be done by including a drive ID or pathname as part of
 your command:

 Z80 A>a:dump foobar.asc
 Z80 A>b:\bin\dump foobar.asc
 Z80 A>\mystuff\dump foobar.asc

 Alternatively, you may want to rename your .COM file so that it no
 longer conflicts with an Emulator Builtin Command name.

 Numeric Arguments

 Some Builtin Commands accept numeric arguments. These may represent
 addresses to be dumped, the number of pages to save, or whatever.

 A numeric argument may be entered in any of several ways:

 As a HEX number. No prefix is required in this case, as this is
 the default numeric radix.

 EMULATOR BUILTIN COMMANDS

 Examples: ffff 0 7F -5 +3FF

 As a decimal number, prefixed by a period (".").

 Examples: .10 .0 -.1 +.256 .65022

 As a binary number, prefixed with the percent sign ("%").

 Examples: %0 %1010101011110000 -%1

 As an ASCII character, prefixed by the apostrophe ("'").

 Examples: 'A '" '0 -'Z

 As an ASCII escape sequence, prefixed by an apostrophe and back-
 slash ("'\").

 Examples:

 '\\ (single "\" char)
 '\0 (NUL byte)
 '\b or '\B (Backspace char)
 '\t or '\T (TAB char)
 '\n or '\N (LINEFEED char)
 '\r or '\R (CARRIAGE RETURN char)
 '\' (single apostrophe ("'") char)
 '\" (single double-quote char)
 '\xFF or '\XFF (byte with HEX value of FF)

 As a label which has been defined with the "label" builtin command.

 Examples: fcb1 program_start BDOS -reserved

 As two or more of the above entries, connected with "+" or "-"
 operators.

 Examples:

 fcb1+5
 program_end-table_length
 'A-40+'a
 table-5+offset

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 EMULATOR BUILTIN COMMANDS

 The Builtin Commands are presented by functional grouping:

 - The PCDOS pass-through command prefix
 - CP/M Builtins that are emulated
 - Emulator Builtins that are similar to CP/M's
 - General Emulator commands
 - Emulator DEBUG commands
 - CP/M Environment and file control commands
 - RESOURCE commands

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: PCDOS PASS-THROUGH

 Builtin:

 Passes command xxxxxx to PCDOS. This gives you a way to use the usual
 PCDOS utilities from within the emulator, without having them interpret-
 ed as CP/M commands. Everything after the "!" character is passed as a
 command to PCDOS.

 This command requires the reloading (by PCDOS) of the PCDOS COMMAND.COM
 file from disk. See the section on "The PCDOS Environment" for more
 detail on this subject.

 Since PCDOS handles the command (and any command arguments that may be
 present), the standard PCDOS "PATH" environment string may apply. So may
 all other PCDOS conventions, like I/O redirection, wildcards, PCDOS
 device names, etc.

 The given command is executed above the Emulator's memory. This implies
 that there had better be enough memory available above the Emulator to
 run the given command.

 You may use this facility to "drop into" PCDOS for a while (perhaps to
 use a PCDOS screen editor on a CP/M source file), and then return to the
 Emulator. Use "!command" to drop into DOS, and "exit" to leave PCDOS and
 return to the Emulator.

 This is also the primary way to take advantage of PCDOS's directory
 structure while within CP/M. You may issue "CHDIR", "MKDIR", and other
 directory-related commands directly to PCDOS. The effect of such
 commands carries over to the Emulator.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: PCDOS PASS-THROUGH

 Example (from an actual session):

 Z80 A>!cd \foo
 Z80 A>!cd \
 Z80 A>!rd \foo
 Z80 A>!chkdsk b:

 362496 bytes total disk space
 1024 bytes in 1 directories
 272384 bytes in 10 user files
 89088 bytes available on disk

 423936 bytes total memory
 152384 bytes free

 Z80 A>!md foo
 Z80 A>!cd foo
 Z80 A>stat *.*

 Volume in drive A has no label
 Directory of A:\foo

 . <DIR> 11-19-85 1:15a
 .. <DIR> 11-19-85 1:15a
 2 File(s) 144384 bytes free

 Z80 A>!command

 The IBM Personal Computer DOS
 Version 2.00 (C)Copyright IBM Corp 1981, 1982, 1983

 Tue 11-19-1985 1:16:00.18
 A:>chkdsk

 362496 bytes total disk space
 1024 bytes in 1 directories
 217088 bytes in 17 user files
 144384 bytes available on disk

 423936 bytes total memory
 149264 bytes free

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: PCDOS PASS-THROUGH

 Tue 11-19-1985 1:16:16.17
 A:>exit

 Z80 A>!format a:

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: EMULATED CP/M BUILTIN'S

 Builtin:

 Changes the default disk drive to the drive whose letter name is
 represented by the "d" character. The command prompt will change to

 Z80 d>

 to reflect the new default. Drive d's current PCDOS directory will
 then be the first directory searched for Z80 command (.COM) files,
 unless explicitly overridden by a drive prefix or pathname. Data files
 that are created will default to that drive and its current directory.
 Data files that are read will be searched for only in that drive and
 directory, unless explicitly overridden by the Z80 program.

 Example (from an actual session):

 Z80 A>stat b:*.*

 Volume in drive B has no label
 Directory of B:\

 WORDSTAR <DIR> 11-02-85 4:19a
 1 File(s) 89088 bytes free

 Z80 A>dir b:\wordstar\ws*.*

 Volume in drive B has no label
 Directory of B:\wordstar

 WSMSGS OVR 27904 11-06-85 6:27p
 WSOVLY1 OVR 34048 11-06-85 6:30p
 WSU COM 15872 11-06-85 6:32p
 WS COM 15872 11-06-85 6:37p
 4 File(s) 89088 bytes free

 Z80 A>b:

 Z80 B>dir

 Volume in drive B has no label
 Directory of B:\

 WORDSTAR <DIR> 11-02-85 4:19a
 1 File(s) 89088 bytes free

 BUILTIN COMMANDS: EMULATED CP/M BUILTIN'S

 Z80 B>stat a:*.exe

 Volume in drive A has no label
 Directory of A:\

 Z80MU EXE 94976 11-18-85 3:31p
 1 File(s) 142336 bytes free

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: EMULATED CP/M BUILTIN'S

 Builtin: del <pattern>
 era <pattern>
 delete <pattern>
 erase <pattern>

 These are identical commands. All cause the invocation of the PCDOS
 "DEL" command to delete files that match <pattern>.

 See the PCDOS manual for details of <pattern>.

 We have created several synonyms for the same command in order to make
 life easier for CP/M folks who are used to saying "ERA", and PCDOS
 folks who are used to saying "DEL" or whatever.

 These commands cause PCDOS to reload COMMAND.COM, so see "The PCDOS
 Environment" section for further detail on that subject.

 Example:

 Z80 A>erase b:*.asm
 Z80 A>del *.*
 Are you sure? y
 Z80 A>delete c:\backup\foo.*
 Z80 A>era foo.asm

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: EMULATED CP/M BUILTIN'S

 Builtin: dir <pattern>
 stat <pattern>

 Shows a directory of files matching <pattern>. This invokes the PCDOS
 "DIR" command, so remember about COMMAND.COM (see "The PCDOS Environ-
 ment" section).

 <pattern> is passed directly to PCDOS. So see the PCDOS manual if you
 want to know what's legal.

 The CP/M STAT command (STAT.COM) cannot be emulated, because the
 first thing that Digital Research's STAT.COM does is invoke a hardware-
 specific CP/M function that means nothing on the IBM PC, and is there-
 fore illegal within the Emulator. But the most common function of
 STAT.COM - displaying filenames and file sizes with "STAT *.*" or
 whatever - can be done with PCDOS's "DIR" command. So STAT and DIR have
 been made to do the same thing. If you're used to typing "STAT *.*" in
 CP/M, then you'll be able to do the same thing under the Emulator.

 Example (from an actual session):

 Z80 A>stat b:*.*

 Volume in drive B has no label
 Directory of B:\

 WORDSTAR <DIR> 11-02-85 4:19a
 1 File(s) 89088 bytes free

 Z80 A>dir b:\wordstar\ws*.*

 Volume in drive B has no label
 Directory of B:\wordstar

 WSMSGS OVR 27904 11-06-85 6:27p
 WSOVLY1 OVR 34048 11-06-85 6:30p
 WSU COM 15872 11-06-85 6:32p
 WS COM 15872 11-06-85 6:37p
 4 File(s) 89088 bytes free

 Z80 A>b:

 Z80 B>dir

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: EMULATED CP/M BUILTIN'S

 Volume in drive B has no label
 Directory of B:\

 WORDSTAR <DIR> 11-02-85 4:19a
 1 File(s) 89088 bytes free

 Z80 B>stat a:*.exe

 Volume in drive A has no label
 Directory of A:\

 Z80MU EXE 94976 11-18-85 3:31p
 1 File(s) 142336 bytes free

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: EMULATED CP/M BUILTIN'S

 Builtin: type <filename.typ>
 ty <filename.typ>

 This command is the equivalent of the CP/M "TYPE" command. The specified
 file is displayed on the standard output (normally the screen).

 The display may be paused with either the CP/M convention of ^S/^Q or
 the PCDOS convention of CTRL-NUMLOCK. It may be aborted with ^C or
 CTRL-BREAK.

 This command causes PCDOS to reload COMMAND.COM, so see "The PCDOS
 Environment" section for further detail on that subject.

 Example:

 Z80 A>ty b:foo.asm
 Z80 A>type \source\backup\foo.doc
 Z80 A>ty ctest.err

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: SIMILAR TO CP/M'S

 Builtin: rename <oldpath> <newpath>
 ren <oldpath> <newpath>

 Renames the file specified by <oldpath> to the name given by <newpath>.

 NOTE: This is not the same syntax used by the CP/M equivalent,
 which is "REN <newname>=<oldname>".

 This command causes PCDOS to reload COMMAND.COM, so see "The PCDOS
 Environment" section for further detail on that subject.

 This command invokes the PCDOS "RENAME" command. See the PCDOS manual
 for details.

 Example:

 Z80 A>rename dbase.exe dbase.xxx

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: SIMILAR TO CP/M'S

 Builtin: save n <filename.typ>
 sa n <filename.typ>

 Saves n 256-byte pages of CP/M memory (starting at address 0100h) to the
 specified file. The data written to the file is a simple memory image.
 No translation is done, even if a .HEX extension is given in the
 filename. If you want to write a true Intel HEX file, use the write
 Builtin.

 NOTE: This is close to the CP/M equivalent, except that the
 default radix for n is HEX, not decimal as with CP/M.

 Example (from an actual session):

 Z80 A>save 3 820init2.com

 Writing 3 pages (768 bytes) to file '820INIT2.COM'

 Z80 A>save 0 continue.com

 Writing 0 pages (0 bytes) to file 'CONTINUE.COM'

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: SIMILAR TO CP/M'S

 Builtin: copy <from_pattern> <to_path>
 co <from_pattern> <to_path>

 Copies the file(s) specified by <from_pattern> to the file or directory
 specified by <to_path>.

 This command invokes the PCDOS "COPY" command, so see the PCDOS manual
 for details as to what's legal.

 It also causes PCDOS to reload COMMAND.COM, so see "The PCDOS Environ-
 ment" section for further detail on that subject.

 This command is roughly equivalent to CP/M's "PIP <outfile>=<infile>".
 You have the additional power of PCDOS's directory and device name
 support, however.

 Example:

 Z80 A>copy *.* B:
 Z80 A>co b:*.asm
 Z80 A>copy \bin*.* c:\backup
 Z80 A>copy *.asm combined.bak
 Z80 A>co *.asm *.bak
 Z80 A>co foo.asm lpt1:
 Z80 A>co con autoexec.bat

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: GENERAL

 Builtin: help [command]
 ? [command]

 Displays a brief description of the requested Builtin Command.

 If no command name follows the "help" command, then a rather lengthy
 explanation of all commands is displayed. If you press the SPACE bar,
 this long listing will be interrupted at the next logical break.

 The listing can be paused with ^S/^Q, or CTRL-NumLock. You can turn
 printer copying on before the listing starts (which is recommended) with
 ^P or CTRL-PrtSc.

 Example:

 Z80 A>help xreg
 Z80 A>? list
 Z80 A>?
 Z80 A>help ?
 Z80 A>help b:
 Z80 A>help !

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: GENERAL

 Builtin: illop [fault | nop]
 i [fault | nop]

 Specifies how the Emulator is to handle illegal Z80 opcodes.

 If "illop fault" is entered, then an illegal Z80 opcode will cause a Z80
 fault, meaning that the Emulator will stop executing the Z80 program and
 will display an error message to the effect that an illegal opcode was
 encountered at such-and-such and address.

 If "illop nop" is entered, then an illegal Z80 opcode will simply be
 ignored. This is closer to true Z80 operation. Execution will continue
 with the next Z80 instruction after the illegal opcode.

 If only "illop" is entered, then the Emulator simply reports how it is
 currently handling illegal opcodes.

 Example (from an actual session):

 Z80 A>i

 Illegal opcodes will act as NOP's

 Z80 A>illop fault

 Illegal opcodes will FAULT

 Z80 A>illop nop

 Illegal opcodes will act as NOP's

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: GENERAL

 Builtin: exit
 e

 Exits the Emulator, and returns to PCDOS.

 Due to certain limitations within PCDOS, you should not remove any
 floppy disks that are being used until you have exited the Emulator via
 this command, unless you know that the Z80 programs which you have run
 have truly closed any files that have been written to.

 We have used the Emulator extensively, and have frequently changed
 floppies while within the Emulator. We have never experienced corrupted
 floppy data. But then, we use only "safe" CP/M software like ASM.COM,
 M80.COM, L80.COM, and so on. Such programs are very good about closing
 files when they exit.

 This warning is included not because it has ever happened to us, but
 because we wrote the code, and we know about certain "windows" within
 which a faulting CP/M program could conceivably confuse PCDOS into
 writing one floppy's data to another floppy, destroying the second
 floppy's file data and perhaps even its FAT (File Allocation Table).

 Example:
 Z80 A>exit
 A>

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: GENERAL

 Builtin: speed?
 howfast?

 Calculates the effective speed of the imaginary Z80 that exists within
 the Emulator.

 A sample Z80 program is loaded into the CP/M segment. It is run, and its
 execution is timed. This program takes up to half a minute to run on a
 simple IBM PC with an 8088, and correspondingly less time on faster
 machines (i.e. - a PC with a NEC V20 chip, an IBM PC/AT, etc).

 The effective clock speed is displayed at the end of the test.

 The reported speed should be taken with a grain of salt. What it means
 is that if you had a real Z80 running the exact instruction mix found in
 the test program, then that real Z80 would have to run at the reported
 clock speed in order to perform as fast (or slow) as the Emulator's
 imaginary Z80.

 For example, assume that the reported effective clock is 250,000 Hz.
 This means that the imaginary Z80 in the Emulator is running the test
 program at one fourth the speed of a 1 MegaHertz Z80 (as found on a
 Microsoft SoftCard in an Apple, for example), one eighth the speed of a
 2 MegaHertz Z80, etc.

 Does this mean that your CP/M programs run under the Emulator will run
 at one fourth the speed of an Apple with a SoftCard? Not necessarily.
 The reported speed is for CPU-bound (no I/O) operation, of the exact mix
 of instructions found in the test program. Real CP/M programs tend to
 have a mix of CPU and I/O operations. I/O operations to disk are handled
 as fast as the IBM PC can do them. They aren't emulated, they are done.
 And CP/M programs whose CPU-bound operations involve a lot of register-
 to-register operations will be emulated faster than those requiring a
 lot of memory accesses.

 It's a complicated relationship. Our experience has been that an
 assembly (using ASM.COM) runs about 1/5th the speed under the Emulator
 on a stock, floppy-based IBM PC than it does on an Apple with a SoftCard
 and 1 MegaHertz Z80. The addition of a NEC V20 processor to the IBM PC
 improves performance. So does using a hard disk instead of floppies. And
 moving the Emulator to an IBM PC/AT brings emulated performance close to
 that of a 1 MegaHertz Z80.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: GENERAL

 NOTE: This command causes a Cold Boot of the CP/M segment.
 This destroys any CP/M program that you may have had in
 memory.

 Example (from an actual session):

 Z80 A>speed?

 *** CP/M Segment COLDBOOTED ***

 Beginning Z80 timing test. Please wait...

 Effective Z80 clock speed is 248101 Hz

 *** CP/M Segment COLDBOOTED ***

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: DEBUG SUPPORT

 Builtin: btrace [SOME | ALL]
 bt [SOME | ALL]

 Displays the current BDOS Trace Table (if no arguments are present), or
 controls the BDOS functions that will be traced.

 As a CP/M program is run, the various BDOS calls that it makes are
 traced. This command displays the trace table as it has been left by the
 last CP/M program run.

 Items reported include:

 1) The trace table sequence number.
 2) The Program Counter of the CALL to the BDOS.
 3) The contents of the Z80 DE register at the entry to the BDOS
 handler.
 4) The DMA address in effect at the instant of this BDOS call.
 5) The BDOS function # (as passed in the Z80 C-reg) and a text
 description of the function being performed.

 The BDOS Trace Table is cleared by a COLD BOOT, by the load of a new
 CP/M program, and at various other times when it seems logical to clear
 it out.

 If an argument (either "SOME" or "ALL") is present, then the trace
 table is not displayed. Instead, the Emulator adjusts (according to the
 argument) the way that future traces will be made:

 If "SOME" is specified, then the Console Status, Console
 Output, Direct Console I/O, and List Output BDOS functions
 will not be traced. This can help to keep the BDOS Trace Table
 from filling up with unimportant entries.

 If "ALL" is specified, then even these console character BDOS
 functions will be traced.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: DEBUG SUPPORT

 Example (from an actual run of DUMP.COM):

 Z80 A>btrace all

 Future BDOS traces will include console character functions

 Z80 A>a:dump dump.com

 0000 21 00 00 39 22 15 02 31 57 02 CD C1 01 FE FF C2
 0010 1B 01 11 F3 01 CD 9C 01 C3 51 01 3E 80 32 13 02
 0020 21 00 00 E5 CD A2 01 E1 DA 51 01 47 7D E6 0F C2
 ...
 ... (Much of DUMP.COM output deleted for brevity)
 ...
 0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 Z80 A>bt

 BDOS TRACE TABLE:
 SEQ# Z80PC Z80DE Z80DMA FUNCTION
 ----- ----- ----- ------ ----------------
 006 016BH 0030H 0080H 02H Console Output from E-reg = 0
 007 016BH 0030H 0080H 02H Console Output from E-reg = 0
 008 016BH 0020H 0080H 02H Console Output from E-reg =

 ...
 ... (Many entries deleted for brevity)
 ...

 049 016BH 0030H 0080H 02H Console Output from E-reg = 0
 050 01D6H 005CH 0080H 14H Read File (Sequential), FCB at (DE)
 051 016BH 000DH 0080H 02H Console Output from E-reg = ^M
 052 016BH 000AH 0080H 02H Console Output from E-reg = ^J
 244 016BH 0020H 0080H 02H Console Output from E-reg =
 245 016BH 0030H 0080H 02H Console Output from E-reg = 0
 246 016BH 0030H 0080H 02H Console Output from E-reg = 0
 247 016BH 0020H 0080H 02H Console Output from E-reg =
 248 016BH 0030H 0080H 02H Console Output from E-reg = 0
 249 016BH 0030H 0080H 02H Console Output from E-reg = 0
 250 016BH 000DH 0080H 02H Console Output from E-reg = ^M
 251 016BH 000AH 0080H 02H Console Output from E-reg = ^J
 252 015EH 0070H 0080H 0BH Get Console Status to A-reg
 253 016BH 0030H 0080H 02H Console Output from E-reg = 0
 254 016BH 0031H 0080H 02H Console Output from E-reg = 1
 255 016BH 0037H 0080H 02H Console Output from E-reg = 7
 001 016BH 0030H 0080H 02H Console Output from E-reg = 0

 BUILTIN COMMANDS: DEBUG SUPPORT

 002 016BH 0020H 0080H 02H Console Output from E-reg =
 003 016BH 0030H 0080H 02H Console Output from E-reg = 0
 004 016BH 0030H 0080H 02H Console Output from E-reg = 0
 005 016BH 0020H 0080H 02H Console Output from E-reg =
 -- END OF BDOS TRACE TABLE --

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: DEBUG SUPPORT

 Builtin: break
 break clear [n [n...]]
 break set n [n...]
 b
 b clear [n [n...]]
 b set n [n...]

 Manipulates the Breakpoint Table, which contains up to 50 Z80 addresses
 at which execution of the Z80 is to be halted, and control returned to
 the Emulator's command prompt.

 Breakpoints are typically used in conjunction with the "read" and "go"
 commands, and various other debug commands.

 The Breakpoint Table is cleared when a new CP/M program is loaded, when
 the CP/M Segment is Cold Booted, and at various other times when it
 seems logical to clear it.

 If only "break" is entered, then the current Breakpoint Table addresses
 are displayed.

 If "break set" is entered followed by one or more Z80 addresses, then
 the addresses following the command are added to the Table.

 If only "break clear" is entered, then all active breakpoint addresses
 are removed. No execution breakpoints will occur.

 If "break clear" is entered followed by one or more Z80 addresses, then
 only the specified addresses are removed from the Breakpoint Table.

 NOTE: When a breakpoint is encountered during execution of the
 Z80 code, that breakpoint's address is automatically cleared
 from the table.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: DEBUG SUPPORT

 Example:

 Z80 A>break clear

 0 Breakpoints cleared

 Z80 A>b set startup startup+3 14f 210 221

 5 Breakpoints set - 5 now in table

 Z80 A>b clear 221

 1 Breakpoints cleared, 4 left

 Z80 A>b

 Current Breakpoints:
 0100H 0103H 014FH 0210H
 4 Breakpoints currently set

 Z80 A>b clear 210 startup

 2 Breakpoints cleared, 2 left

 Z80 A>b

 Current Breakpoints:
 0103H 014FH
 2 Breakpoints currently set

 Z80 A>b clear

 2 Breakpoints cleared

 Z80 A>b

 Current Breakpoints:
 0 Breakpoints currently set

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: DEBUG SUPPORT

 Builtin: dump [n1 [n2]]
 d [n1 [n2]]

 Dumps Z80 (CP/M) memory in HEX and ASCII.

 If n1 is given, then the first address dumped is n1. If no arguments are
 present, then the first address is the one following the last one
 done by a previous dump command.

 If n2 is given, then the dump continues through Z80 (CP/M) address n2.
 If n2 is not given, then n2 is assumed to be 255 bytes beyond the
 starting address.

 A lengthy dump may be interrupted by pressing the SPACE bar.

 Example (from an actual session):

 Z80 A>dump 100

 ADDR 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 01234567 89ABCDEF
 ---- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -------- --------
 0100: 21 00 00 39 22 15 02 31 57 02 CD C1 01 FE FF C2 !..9"..1 W.MA.~.B
 0110: 1B 01 11 F3 01 CD 9C 01 C3 51 01 3E 80 32 13 02 ...s.M.. CQ.>.2..
 0120: 21 00 00 E5 CD A2 01 E1 DA 51 01 47 7D E6 0F C2 !..eM".a ZQ.G}f.B
 0130: 44 01 CD 72 01 CD 59 01 0F DA 51 01 7C CD 8F 01 D.Mr.MY. .ZQ.|M..
 0140: 7D CD 8F 01 23 3E 20 CD 65 01 78 CD 8F 01 C3 23 }M..#> M e.xM..C#
 0150: 01 CD 72 01 2A 15 02 F9 C9 E5 D5 C5 0E 0B CD 05 .Mr.*..y IeUE..M.
 0160: 00 C1 D1 E1 C9 E5 D5 C5 0E 02 5F CD 05 00 C1 D1 .AQaIeUE .._M..AQ
 0170: E1 C9 3E 0D CD 65 01 3E 0A CD 65 01 C9 E6 0F FE aI>.Me.> .Me.If.~
 0180: 0A D2 89 01 C6 30 C3 8B 01 C6 37 CD 65 01 C9 F5 .R..F0C. .F7Me.Iu
 0190: 0F 0F 0F 0F CD 7D 01 F1 CD 7D 01 C9 0E 09 CD 05M}.q M}.I..M.
 01A0: 00 C9 3A 13 02 FE 80 C2 B3 01 CD CE 01 B7 CA B3 .I:..~.B 3.MN.7J3
 01B0: 01 37 C9 5F 16 00 3C 32 13 02 21 80 00 19 7E B7 .7I_..<2 ..!...~7
 01C0: C9 AF 32 7C 00 11 5C 00 0E 0F CD 05 00 C9 E5 D5 I/2|..\. ..M..IeU
 01D0: C5 11 5C 00 0E 14 CD 05 00 C1 D1 E1 C9 46 49 4C E.\...M. .AQaIFIL
 01E0: 45 20 44 55 4D 50 20 56 45 52 53 49 4F 4E 20 31 E DUMP V ERSION 1
 01F0: 2E 34 24 0D 0A 4E 4F 20 49 4E 50 55 54 20 46 49 .4$..NO INPUT FI

 Z80 A>d primary_fcb secondary_fcb+.15

 ADDR 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 01234567 89ABCDEF
 ---- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -------- --------
 0050: 01 44 55 4D .DUM
 0060: 50 20 20 20 20 43 4F 4D 00 00 80 00 80 01 00 00 P COM
 0070: 6D 0B 1B BF 40 F3 00 00 00 F3 00 00 m..?@s.. .s..

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: DEBUG SUPPORT

 Builtin: go [n]
 g [n]

 Begins execution of Z80 code at address n. If n is not specified, then
 the starting address defaults to the current Z80 Program Counter (PC).

 This is the usual way to run a program that has been read from disk. It
 is also used to continue execution when the Z80 has been stopped via a
 breakpoint, or by the user pressing the BREAK key.

 NOTE: A Z80 command (.COM) file that is invoked by typing
 its name is automatically run. It does not require this
 command in order to be executed.

 Example:
 Z80 A>go
 Z80 A>g 100
 Z80 A>g -.768
 Z80 A>go fixit5-3

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: DEBUG SUPPORT

 Builtin: find n "text"
 f n "text"

 Searches the CP/M Segment for the binary pattern represented by string
 "text". The search begins at Z80 address n, which is a numeric value as
 described at the start of this section.

 The "text" string may (and usually does) include imbedded escape
 sequences, as follows:

 \\ (single "\" char)
 \0 (NUL byte)
 \b or \B (Backspace char)
 \t or \T (TAB char)
 \n or \N (LINEFEED char)
 \r or \R (CARRIAGE RETURN char)
 \' (single apostrophe ("'") char)
 \" (single double-quote char)
 \xFF or \XFF (byte with HEX value of FF)

 The CP/M Segment address of each match is displayed as a four-digit HEX
 value. The search ends with CP/M Segment address 0FFFFh.

 Example (from an actual session):

 Z80 A>patch 8000 "Joan Riff"

 Z80 A>find 100 "Joan"
 8000H

 Z80 A>f .256 "\xcd\x05\x00"
 015EH 016BH 019EH 01CAH 01D6H

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: DEBUG SUPPORT

 Builtin: patch [n]
 patch n "xxxx"
 p [n]
 p n "xxxx"

 Either enters an interactive patch dialog which allows you to change
 CP/M memory a byte at a time, or else applies string patch "xxxx" to the
 CP/M Segment and does not enter interactive patch mode.

 If n (which is a numeric value as defined at the start of this section)
 is specified, then patching starts at address n. If n is not specified,
 then patching begins with next patch location (the one above the last
 location patched). Note that in the patch n "xxxx" format, numeric
 value n is required.

 The interactive patch dialog consists of:

 1) a prompt which shows the next address to be patched and its
 current contents.

 2) user responses.

 User responses to the interactive patch prompt are as follows:

 ?<return> A question mark (followed by RETURN) to request a short
 help message showing available responses.

 n<return> A standard numeric argument as described at the start
 of this section. This is the byte value to be patched into the
 specified CP/M address.

 NOTE: This may also be a 16-bit value. If the high-order
 byte of the resultant n is non-zero, then this is taken
 to be a 16-bit value, and fills 2 bytes.

 "xxx" A string of ASCII text, delimited by double-quote characters.
 The bytes of the string are patched into successive CP/M
 memory locations. The string may include ASCII escape se-
 quences as follows:

 \\ (single "\" char)
 \0 (NUL byte)
 \b or \B (Backspace char)
 \t or \T (TAB char)
 \n or \N (LINEFEED char)
 \r or \R (CARRIAGE RETURN char)
 \' (single apostrophe ("'") char)

 BUILTIN COMMANDS: DEBUG SUPPORT

 \" (single double-quote char)
 \xFF or \XFF (byte with HEX value of FF)

 <space><return> to leave the addressed byte unchanged, and move to
 next one.

 <return> to exit the interactive patch mode.

 ;xxx A comment (everything following the semicolon is ignored).

 Example (from an actual session):

 Z80 A>patch 400

 Enter '?' for help with PATCH entries

 0400H (00H) = 'R
 0401H (00H) = 'I+20
 0402H (00H) = "ff\0"
 0405H (00H) =

 Z80 A>d 400 40f 400 40f

 ADDR 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 01234567 89ABCDEF
 ---- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -------- --------
 0400: 52 69 66 66 00 00 00 00 00 00 00 00 00 00 00 00 Riff....

 Z80 A>p primary_fcb "JoanRiff "

 Z80 A>d primary_fcb secondary_fcb+.15

 ADDR 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 01234567 89ABCDEF
 ---- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -------- --------
 0050: 4A 6F 61 6E Joan
 0060: 52 69 66 66 20 20 20 4D 00 00 80 00 80 01 00 00 Riff M
 0070: 6D 0B 1B BF 40 F3 00 00 00 F3 00 00 m..?@s.. .s..

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: DEBUG SUPPORT

 Builtin: xreg [rr n]
 x [rr n]

 Sets Z80 register or flag rr to value n.

 If no args are present, then the current Z80 register values and flags
 are displayed.

 If args are present, then the register or flag represented by rr is set
 to the numeric value n (whose format is described at the beginning of
 this section).

 NOTE: The Z80 has a primary and an alternate set of registers
 and flags. The alternate set is indicated by appending an
 apostrophe ("'") to the register or flag name.

 The register or flag to be set (the rr argument) must be one of the
 following (in either upper or lowercase):

 regs: A F B C D E H L
 A' F' B' C' D' E' H' L'
 AF BC DE HL
 AF' BC' DE' HL'
 IX IY SP PC
 IFF1 IFF2 IMF I R

 flags: SF ZF HF P/V NF CF
 SF' ZF' HF' P/V' NF' CF'

 Example (from an actual session):

 Z80 A>xreg pc 0

 Z80 A>x

 A F B C D E H L IX IY I R SP PC IFF1 IFF2 IMF
 0A01 000F 007F FEFC 0000 0000 00 00 FEFE 0000 0 0 0
 0000'0000'0000'0000'SF=0 ZF=0 HF=0 P/V=0 NF=0 CF=1
 L0000: C3 03 FF JP LFF03

 Z80 A>xreg bc ffff

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: DEBUG SUPPORT

 Z80 A>x

 A F B C D E H L IX IY I R SP PC IFF1 IFF2 IMF
 0A01 FFFF 007F FEFC 0000 0000 00 00 FEFE 0000 0 0 0
 0000'0000'0000'0000'SF=0 ZF=0 HF=0 P/V=0 NF=0 CF=1
 L0000: C3 03 FF JP LFF03

 Z80 A>x c' 'A

 Z80 A>xreg de .256

 Z80 A>xreg AF' 55

 Z80 A>xreg

 A F B C D E H L IX IY I R SP PC IFF1 IFF2 IMF
 0A01 FFFF 0100 FEFC 0000 0000 00 00 FEFE 0000 0 0 0
 0055'0041'0000'0000'SF=0 ZF=0 HF=0 P/V=0 NF=0 CF=1
 L0000: C3 03 FF JP LFF03

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: DEBUG SUPPORT

 Builtin: trace [n]
 t [n]

 Traces a certain number (specified by the n argument) of Z80 instruction
 executions, displaying Z80 regs and flags after each instruction's
 execution.

 Execution begins at the current Z80 Program Counter (PC).

 If no argument is given, then n defaults to 1.

 The n argument is a numeric value as described at the beginning of this
 section.

 NOTE: The PC of each executed instruction is saved in a
 circular buffer for later interpretation by the "pc?" builtin
 command(q.v.).

 Example (from an actual trace of DDT.COM's opening lines):

 Z80 A>read ddt.com

 *** Low = 0100H Next = 1400H
 *** Z80 DMA, PC and Stack automatically set for .COM file

 Z80 A>t 4

 A F B C D E H L IX IY I R SP PC IFF1 IFF2 IMF
 0A01 0FBC 0100 FEFC 0000 0000 00 00 FEFC 0103 0 0 0
 0055'0041'0000'0000'SF=0 ZF=0 HF=0 P/V=0 NF=0 CF=1
 L0103: C3 3D 01 JP L013D

 A F B C D E H L IX IY I R SP PC IFF1 IFF2 IMF
 0A01 0FBC 0100 FEFC 0000 0000 00 00 FEFC 013D 0 0 0
 0055'0041'0000'0000'SF=0 ZF=0 HF=0 P/V=0 NF=0 CF=1
 L013D: 31 00 02 LD SP,L0200

 A F B C D E H L IX IY I R SP PC IFF1 IFF2 IMF
 0A01 0FBC 0100 FEFC 0000 0000 00 00 0200 0140 0 0 0
 0055'0041'0000'0000'SF=0 ZF=0 HF=0 P/V=0 NF=0 CF=1
 L0140: C5 PUSH BC

 A F B C D E H L IX IY I R SP PC IFF1 IFF2 IMF
 0A01 0FBC 0100 FEFC 0000 0000 00 00 01FE 0141 0 0 0
 0055'0041'0000'0000'SF=0 ZF=0 HF=0 P/V=0 NF=0 CF=1
 L0141: C5 PUSH BC

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: DEBUG SUPPORT

 Builtin: notrace [n]
 n [n]

 Executes a certain number (specified by the n argument) of Z80 instruc-
 tions, beginning at the current Z80 Program Counter (PC). The Z80
 registers are not displayed after every instruction, but are displayed
 after the last instruction.

 If no argument is given, then n defaults to 1.

 The n argument is a numeric value as described at the beginning of this
 section.

 NOTE: The PC of each executed instruction is saved in a
 circular buffer for later interpretation by the "pc?" builtin
 command(q.v.).

 Example:

 Z80 A>n 3

 A F B C D E H L IX IY I R SP PC IFF1 IFF2 IMF
 0A01 0F09 0130 FEFC 0000 0000 00 00 01FA FEFE 0 0 0
 0055'0041'0000'0000'SF=0 ZF=0 HF=0 P/V=0 NF=0 CF=1
 LFEFE: 76 HALT

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: DEBUG SUPPORT

 Builtin: pctrace? [FIRST/LAST n [FULL/BRIEF]]
 pc? [FIRST/LAST n [FULL/BRIEF]]

 Displays the Z80 PC's which were saved during the last "trace" or
 "notrace" execution. This is very useful for finding out how the Z80
 wound up at a particular address, or where it went from there.

 The display may proceed from the oldest PC toward the newest (FIRST n),
 or in the reverse direction (LAST n).

 The display may include only the PC itself (BRIEF) or the complete
 disassembled instruction at each PC (FULL).

 Note that a FULL display assumes that instructions haven't been modified
 since they executed. All that is saved in the circular PC queue is the
 PC itself. For a FULL display, the current contents of whatever is at
 that address is disassembled.

 The n argument is a numeric value as described at the beginning of this
 section.

 The default is LAST 512 FULL.

 Example:

 Z80 A>pc?
 Z80 A>pctrace? first 20 full
 Z80 A>pc? last 20 brief

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: DEBUG SUPPORT

 Builtin: move nlow nhigh ndest
 m nlow nhigh ndest

 Moves CP/M memory from one location within the CP/M Segment to another
 location within the CP/M Segment.

 The block of memory to be moved is defined by nlow through nhigh.

 The new location for the block is defined by ndest.

 All three arguments are numeric values as described at the start of this
 section.

 NOTE: The move is done either left-to-right or right-to-left,
 as needed. So no smearing is possible.

 Example (from an actual session):

 Z80 A>p primary_fcb "JoanRiff "

 Z80 A>d primary_fcb secondary_fcb+.15

 ADDR 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 01234567 89ABCDEF
 ---- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -------- --------
 0050: 4A 6F 61 6E Joan
 0060: 52 69 66 66 20 20 20 4D 00 00 80 00 80 01 00 00 Riff M
 0070: 6D 0B 1B BF 40 F3 00 00 00 F3 00 00 m..?@s.. .s..

 Z80 A>move primary_fcb secondary_fcb secondary_fcb

 Z80 A>d primary_fcb secondary_fcb+.15

 ADDR 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 01234567 89ABCDEF
 ---- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -------- --------
 0050: 4A 6F 61 6E Joan
 0060: 52 69 66 66 20 20 20 4D 00 00 80 00 4A 6F 61 6E Riff MJoan
 0070: 52 69 66 66 20 20 20 4D 00 00 80 00 Riff M

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: DEBUG SUPPORT

 Builtin: math <expression>
 ma <expression>

 Prints 16-bit evaluated result of expression, which is composed of
 numeric values (as described at the start of this section) connected
 with '+' or '-' operators.

 The evaluated result is printed in HEX and decimal, as both positive
 and negative numbers.

 Example (from an actual session):

 Z80 A>math 0-7ff

 HEX: F801H -07FFH Dec: 63489 -02047

 Z80 A>ma secondary_fcb-primary_fcb

 HEX: 0010H -FFF0H Dec: 00016 -65520

 Z80 A>ma 'A-40+'a

 HEX: 0062H -FF9EH Dec: 00098 -65438

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: CP/M ENVIRONMENT CONTROL

 Builtin: args <tail>
 ar <tail>

 Formats default FCB's at 5Ch and 6Ch as well as default DMA at 80h per
 command tail, exactly as if <tail> had followed a Z80 command (.COM)
 filename.

 This command is most useful for "filling in" a command tail for Z80 code
 that has been "read" into CP/M memory and which will look for command-
 line arguments.

 For instance, you may want to debug Digital Research's DDT.COM program,
 while telling DDT to load file FOO.COM. You would first load DDT via

 read 100 ddt.com

 You would then fill in DDT's command-line arguments with

 args foo.com

 When executed, DDT would then see "FOO.COM" in both the first FCB at 5Ch
 and as a raw command tail at 80h.

 Example (from an actual session):

 Z80 A>args testfile001 file0002

 Z80 A>d primary_fcb secondary_fcb+.15

 ADDR 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 01234567 89ABCDEF
 ---- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -------- --------
 0050: 00 54 45 53 .TES
 0060: 54 46 49 4C 45 30 30 31 00 00 00 00 00 46 49 4C TFILE001FIL
 0070: 45 30 30 30 32 20 20 20 00 00 00 00 E0002

 Z80 A>d 80 9f

 ADDR 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 01234567 89ABCDEF
 ---- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -------- --------
 0080: 15 20 54 45 53 54 46 49 4C 45 30 30 31 20 46 49 . TESTFI LE001 FI
 0090: 4C 45 30 30 30 32 0D 00 00 00 00 00 00 00 00 00 LE0002..

 Z80 A>args foo.c -n -b -v

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: CP/M ENVIRONMENT CONTROL

 Z80 A>d primary_fcb secondary_fcb+.15

 ADDR 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 01234567 89ABCDEF
 ---- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -------- --------
 0050: 00 46 4F 4F .FOO
 0060: 20 20 20 20 20 43 20 20 00 00 00 00 00 2D 4E 20 C -N
 0070: 20 20 20 20 20 20 20 20 00 00 00 00

 Z80 A>d 80 9f

 ADDR 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 01234567 89ABCDEF
 ---- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -------- --------
 0080: 0F 20 46 4F 4F 2E 43 20 2D 4E 20 2D 42 20 2D 56 . FOO.C -N -B -V
 0090: 0D 45 30 30 30 32 0D 00 00 00 00 00 00 00 00 00 .E0002..

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: CP/M ENVIRONMENT CONTROL

 Builtin: coldboot! ldboot!
 cold!

 Cold Boots CP/M memory by zeroing the 64K CP/M Segment, installing the
 BIOS and BDOS hooks, formatting the first page of memory just as CP/M
 would, etc.

 When you first start up the Emulator, the CP/M Segment has already been
 Cold Booted.

 You may use this command to clean things up when you suspect that Z80
 software may have corrupted the BIOS or BDOS hooks, garbaged page zero,
 or whatever.

 If a Z80 program exits with an Emulator message to the effect that the
 program requests termination via Cold Boot, then you should use this
 command to do it. The Z80 program probably had a good reason for asking
 for a Cold Boot.

 Example:

 Z80 A>coldboot!

 *** CP/M Segment COLDBOOTED ***

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: CP/M ENVIRONMENT CONTROL

 Builtin: terminal [ON | OFF]
 term [ON | OFF]

 Enables or disables the builtin VT52 "emulated terminal".

 If ON is specified, then the emulated CP/M BIOS routines that deal with
 the console will perform terminal emulation as described previously.
 Such I/O goes straight to the IBM PC screen (via the IBM PC ROM BIOS
 routines), and is therefore never seen by PCDOS.

 If OFF is specified, then the emulated CP/M BIOS routines that deal
 with the console will not emulate anything. They will simply act
 as if the equivalent CP/M BDOS function had been called. This means that
 CP/M BIOS terminal I/O will go to PCDOS for handling. This makes it
 available for PCDOS I/O redirection. It also allows a PCDOS emulator
 (like ANSI.SYS) to become the CP/M terminal emulator.

 If no argument is specified, then the current state of emulation is
 simply reported.

 Example:

 Z80 A>term

 Terminal Emulation is OFF (CP/M BIOS console goes to PCDOS)

 Z80 A>terminal on

 Terminal Emulation is ON (via CP/M BIOS)

 Z80 A>terminal off

 Terminal Emulation is OFF (CP/M BIOS console goes to PCDOS)

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: CP/M ENVIRONMENT CONTROL

 Builtin: read [n] <filename.typ>
 r [n] <filename.typ>

 Reads data from specified file into the CP/M Segment, at address n.

 If n is absent, then it defaults to 0100.

 This is the primary method used to load Z80 software for debugging. It
 is normally used to read Z80 command (.COM) files into memory, but this
 command will also read raw data files with no problem.

 If <filename.typ> has a filetype of .HEX, then the file is assumed to be
 in standard Intel HEX format, and is loaded into memory at addresses
 specified by the HEX records. In such a case, the n argument may have no
 meaning.

 The n argument is a numeric value of the sort described at the beginning
 of this section.

 NOTE: If a read of a file causes data to be read below 0100h
 or above FD00h, then the CP/M environment will be clobbered.
 If you're developing non-CP/M Z80 code, then who cares. If
 you're reading in a file that expects to call CP/M, however,
 then running the thing with a clobbered CP/M environment just
 might scramble the brains of the imaginary Z80.

 This command is used by us at CCS to load test versions of our Z80
 software, which we leave in .HEX format when we run L80.

 Example:

 Z80 A>read 100 820init.com

 *** Low = 0100H Next = 0380H
 *** Z80 DMA, PC and Stack automatically set for .COM file

 Z80 A>write 100 360 820init.hex

 Writing HEX records for 0100H thru 0360H (609 bytes) to file
 '820INIT.HEX'

 Z80 A>read 820init.hex

 *** .HEX file Starting Address = 0100H
 *** Low = 0100H Next = 0360H

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: CP/M ENVIRONMENT CONTROL

 Builtin: write nlow nhigh <filename.typ>
 w nlow nhigh <filename.typ>

 Write a block of CP/M memory to a disk file.

 The bounds of the block to be written are specified by nlow and nhigh,
 which are numeric values as described at the start of this section.

 The specified block of memory is written from the CP/M Segment to the
 specified file. It is written as a pure memory image, unless a .HEX
 extension is supplied.

 Specifying a filename of type .HEX will cause an Intel HEX file to be
 written. The final record of the generated HEX file is the special
 HEX record which specifies the starting execution address of the
 program. This address is assumed to be nlow.

 Example:

 Z80 A>read 100 820init.com

 *** Low = 0100H Next = 0380H
 *** Z80 DMA, PC and Stack automatically set for .COM file

 Z80 A>write 100 360 820init.hex

 Writing HEX records for 0100H thru 0360H (609 bytes) to file
 '820INIT.HEX'

 Z80 A>read 820init.hex

 *** .HEX file Starting Address = 0100H
 *** Low = 0100H Next = 0360H

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: CP/M ENVIRONMENT CONTROL

 Builtin: submit <filename.typ>
 sub <filename.typ>

 Switches input (for Emulator commands only) to the specified file.

 This is roughly equivalent to the CP/M SUBMIT.COM program, except that
 it is built into the Emulator.

 Z80 application input via BDOS and BIOS does not get switched. Only
 Emulator input is switched. Submit files cannot be nested.

 Input reverts to the standard input (as defined by PCDOS) when EOF is
 detected on the specified file.

 NOTE: If a keypress is detected during submit file processing
 but outside of Z80 operation (i.e. - when the Emulator is
 expecting a command), then the submit file is aborted. This
 is how you cancel a submit file - just press SPACE while it
 is running.

 Example:
 Z80 A>submit script
 Z80 A>sub c:\cpm\autoexec.z80 sub c:\cpm\autoexec.z80

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: RESOURCE FACILITY COMMANDS

 Builtin: list [n1 [n2]] [>outfile | >>outfile]
 list prologue n1 n2 [>outfile | >>outfile]
 list include [A][O][F]
 l [n1 [n2]] [>outfile | >>outfile]
 l prologue n1 n2 [>outfile | >>outfile]
 l include [A][O][F]

 This is a multi-purpose disassembly command, which does one of three
 things (depending upon the arguments that are present):

 Lists disassembled Z80 object code (first form).

 Generates an assembler prologue for the given range of Z80
 object code (second form).

 Specifies fields to be included in disassembly lines (third
 form).

 Format: list [n1 [n2]] [>outfile | >>outfile]
 l [n1 [n2]] [>outfile | >>outfile]

 This form causes the disassembly of Z80 object code from CP/M address n1
 through CP/M address n2 (both of which are numeric values as defined at
 the start of this section). If n2 is absent, then n2 is assumed to be
 n1+22. If n1 is absent, then it defaults to the next address to be
 disassembled (as left by last list command).

 The generated disassembly is sent to (">outfile") or appended to
 (">>outfile") the specified output file. If an output file is not
 specified (no ">" character present), then the generated disassembly
 goes to the standard output as defined by PCDOS (normally the screen).

 NOTE: Disassembly speed decreases as the size of the control
 table increases. It may also be slowed by PCDOS being so
 lethargic with screen output. When disassembling the Radio
 Shack Model 100's memory (which required a control table of
 about 42K), for instance, we were only getting about 2 lines
 of disassembled code per second.

 Generated source code is suitable for input to M80.COM in .Z80 mode.
 Note, however, that any RST instructions use as their argument the
 final address being jumped to, not the RST number (as is customary).
 Also, there is no END statement supplied.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: RESOURCE FACILITY COMMANDS

 Format: list prologue n1 n2 [>outfile | >>outfile]
 l prologue n1 n2 [>outfile | >>outfile]

 This form generates assembler source code suitable for inclusion at the
 front of a Z80 source file. The generated source code is the prologue
 for a given block of Z80 object code, defined by CP/M addresses n1 and
 n2. Both n1 and n2 are numeric values as defined at the start of this
 section.

 The generated prologue contains equates for the various ASCII control
 characters. Additionally, it contains equated labels for any CP/M
 addresses that are referenced by the specified block of Z80 code (from
 n1 to n2), but not contained within it.

 Such a prologue is generally needed at the front of any sizeable Z80
 disassembly.

 The generated prologue is sent to (">outfile") or appended to (">>out-
 file") the specified output file. If an output file is not specified,
 (no ">" character present), then the generated prologue goes to the
 standard output as defined by PCDOS (normally the screen).

 Format: list include [A][O][F]
 l include [A][O][F]

 Specifies the fields to be included in disassembled Z80 instructions.

 If the "A" arg is present, then CP/M addresses will be included at the
 left of disassembled instructions.

 If the "O" argument is present, then raw opcodes will be included after
 the address (if present) but before the Z80 mnemonic.

 If the "F" argument is present, then the disassembled Z80 instruction
 will include a comment explaining the instruction's possible effect(s)
 on the Z80 flags.

 Arguments after "include" may be whole words. Only the first character
 is checked.

 If no arguments appear after "include", then the disassembled Z80
 instruction will consist only of the mnemonic field.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: RESOURCE FACILITY COMMANDS

 Example:
 Z80 A>list include addresses
 Z80 A>list include
 Z80 A>l prologue 100 7ff
 Z80 A>list prologue 0 ffff >model100.rom
 Z80 A>list 0 ffff >>model100.rom
 Z80 A>list

 NOTE: The next section contains a sample Emulator session
 which generates source code from object code. Refer to it for
 more detail about this and related Resource commands.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: RESOURCE FACILITY COMMANDS

 Builtin: control list [n]
 control clear
 control read <filepath>
 control write <filepath>
 control n i | b | w | t | s | c
 c list [n]
 c clear
 c read <filepath>
 c write <filepath>
 c n i | b | w | t | s | c

 This is a multi-purpose command which manipulates the disassembly
 control table.

 The disassembly control table holds CP/M addresses and any or all of the
 following which are associated with each address:

 The data type of the Z80 object code at this address. This is
 called a "control break".

 A symbolic label to be associated with the address.

 A comment to be associated with the address.

 This control table is used by the disassembler (the list command), and
list
 tells it how to format the source code while disassembling.

 The various data type control breaks that may be associated with a CP/M
 address are as follows:

 Instructions (executable Z80 code, disassembled as mnemonics)

 Bytes (disassembled as DB pseudo-ops)

 Words (disassembled as DW pseudo-ops, multiple entries per
 line)

 Table of Words (disassembled as DW pseudo-ops, one per line)

 Storage (disassembled as DS with argument large enough to
 bring it up to next control entry)

 This is how the disassembler knows which parts of your Z80 object code
 are instructions, which are data, and which are irrelevant buffers etc.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: RESOURCE FACILITY COMMANDS

 The specific formats are described below.

 Format: control list [n]
 c list [n]

 This format of the command causes the Emulator to display all control
 table information that is currently known to it. If numeric value n (see
 definition of legal numeric values at start of this section) is present,
 then only control information associated with CP/M addresses greater
 than or equal to n are listed.

 The list includes any control breaks, labels, and comments associated
 with the various CP/M addresses.

 Format: control clear
 c clear

 This format of the command clears out the control table, so that nothing
 is known about the Z80 object code. No CP/M addresses, control breaks,
 labels or comments are defined after this command is given.

 Format: control read <filepath>
 c read <filepath>

 This format of the command causes the Emulator to read a control table
 from the specified filename. The file must have been created by a
 "control write <filepath>" command.

 A currently-defined control table is cleared before the new one is read
 from disk. It is not possible to merge control tables using this
 command.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: RESOURCE FACILITY COMMANDS

 Format: control write <filepath>
 c write <filepath>

 This command writes the current control table to the specified file, for
 later input via the "control read <filepath>" command. All known data is
 written - CP/M addresses, control breaks, labels and comments.

 Format: control n i | b | w | t | s | c
 c n i | b | w | t | s | c

 This format of the command is the real workhorse of control table
 maintenance. It associates a Z80 data type with CP/M address n, which is
 a numeric value as defined at the start of this section.

 The argument following CP/M address n is a directive to the disassembler
 (the list command), and may be any one of the following (note that only
 the first character is required):

 Instructions: switch to Z80 mnemonics when you get to this
 address.

 Bytes: switch to DB pseudo-ops when you get to this address.

 Words: switch to DW pseudo-ops (multiple per line) when you
 get to this address.

 Table of words: switch to DW pseudo-ops (one per line) when
 you get to this address. This is useful for jump tables,
 etc, where you want the source code to be neatly ar-
 ranged.

 Storage: do a single DS (define storage) pseudo-op when you
 get to this address, and make the size field big enough
 to take you up to the next control break address (or the
 end of the disassembly, whichever is lower).

 You may also specify a special argument, which is handled immediately
 and never gets to the disassembler:

 Clear: Clear this address's control break data type. This does
 not remove an associated label or comment. It just undoes
 any control break (of one of the above types) associated
 with this CP/M address.

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: RESOURCE FACILITY COMMANDS

 Example:
 Z80 A>control list
 Z80 A>c clear
 Z80 A>c read b:\model100\model100.ctl
 Z80 A>control write foo.ctl
 Z80 A>c read xyz
 Z80 A>control 100 Instructions
 Z80 A>c 103 b
 Z80 A>c table_start+1 S
 Z80 A>CONTROL bios_address W
 Z80 A>c FF00 Table
 Z80 A>c 103 clear

 NOTE: The next section contains a sample Emulator session
 which generates source code from object code. Refer to it for
 more detail about this and related Resource commands.

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: RESOURCE FACILITY COMMANDS

 Builtin: label n [label_name]
 label autogen n1 n2
 = n [label_name]
 = autogen n1 n2

 This command controls the assignment of symbolic label names to various
 CP/M addresses. Symbolic labels may be used as numeric values in many
 Emulator commands. They are also used by the disassembler when creating
 source code from Z80 object code.

 Format: label n [label_name]
 = n [label_name]

 This format associates label_name with CP/M address n, which is a
 numeric value as described at the start of this section.

 Label names may be up to 32 characters in length. They must contain only
 alphanumeric characters and the underscore character "_".

 If label_name is absent in this command, then any existing label name
 associated with the specified CP/M address is simply deleted.

 Format: label autogen n1 n2
 = autogen n1 n2

 This format causes the Emulator to automatically generate labels (of
 format AUTOxxxx) for all unlabeled CP/M addresses that are referenced by
 the block of Z80 code that starts at n1 and ends at n2 (both of which
 are numeric values as defined at the start of this section).

 Labels that are generated are automatically entered into the current
 control table. Existing labels will not be altered.

 This is a quick way to create labels. It can be useful for rapid
 generation of readable source code from Z80 object code. You should,
 however, define any recognizable labels before using this command. You
 should also make sure that you have pretty accurately defined all
 control breaks that apply to the specified block of Z80 code. There's
 nothing worse than getting a block of data confused with instructions,
 and having this command generate a few hundred bogus labels by misinter-
 preting the Z80 code.

 BUILTIN COMMANDS: RESOURCE FACILITY COMMANDS

 So this is generally the last thing that you do before deciding that
 you have finished disassembling a complete Z80 program.

 NOTE: 16-bit literals will be ignored. There's no way - short
 of human inspection - to tell if the 16-bit value is meant to
 be a Z80 address or just a binary value (like a loop counter).
 In previous versions of the Emulator, there were too many
 bogus labels being autogen'd from 16-bit literals. Now it is
 up to you to decide whether a particular 16-bit literal
 should have a label associated with it. Specifically, the
 following instructions' 16-bit literals are ignored:

 LD IX,nn
 LD IY,nn
 LD BC,nn
 LD DE,nn
 LD HL,nn
 LD SP,nn

 Example:
 Z80 A>= 100 program_entry
 Z80 A>label 7ff program_end
 Z80 A>= 0 warm_boot_jump
 Z80 A>= 5C FCB1
 Z80 A>= 5 BDOS
 Z80 A>label autogen 100 7ff

 NOTE: The next section contains a sample Emulator session
 which generates source code from object code. Refer to it for
 more detail about this and related Resource commands.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: RESOURCE FACILITY COMMANDS

 Builtin: comment n ["text"]
 ; n ["text"]

 Associates source-code comment "text" with CP/M address n, which is a
 numeric value as defined at the start of this section. "text" may be up
 to 254 characters long.

 If "text" is absent, then any existing comment associated with address n
 is simply deleted.

 Note that "text" must be enclosed in double quotes. It may include
 escape sequences as follows:

 \\ Single "\" char
 \0 NUL byte
 \b or \B Backspace char
 \t or \T Tab char
 \n or \N Linefeed char
 \r or \R Return char
 \' Single quote char
 \" Double quote char
 \xFF or \XFF Byte with HEX value FF

 These escape codes made be used to make the comment more readable.

 When a comment is detected by the disassembler, it will be printed in
 one of two places:

 As a line comment, after the mnemonic. Such a comment replaces
 the flags comment field (if present). If "text" starts
 with other than a "\n" escape, then the comment is
 printed in this manner.

 As a multi-line comment, on lines before the instruction. If
 "text" starts with a "\n" escape, then the comment will
 be printed in this manner. Blank comment lines (starting
 with ";") are automatically provided before and after the
 comment, and ";" characters are inserted after every "\n"
 or "\r" found in the "text" string.

 If you want to create a nice-looking multi-line comment, then imbed "\n"
 escapes as line delimiters, and "\t" escapes to line things up on
 succeeding lines.

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 BUILTIN COMMANDS: RESOURCE FACILITY COMMANDS

 If your comment is intended to be a single-line comment appended to the
 disassembled instruction's mnemonic, then avoid imbedded "\n" and "\r"
 escapes.

 Example:
 Z80 A>comment 100 "\nStart of main program"
 Z80 A>; 0 "Jump to BIOS Warm, Start"
 Z80 A>; 100
 Z80 A>comment ff00 "\nBIOS Jump Table\n\n\t3 bytes per JMP"

 NOTE: The next section contains a sample Emulator session
 which generates source code from object code. Refer to it for
 more detail about this and related Resource commands.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 USING THE RESOURCE BUILTIN COMMANDS

 USING THE RESOURCE BUILTIN COMMANDS

 This section presents an example of re-sourcing a piece of Z80 object
 code. It demonstrates the use of the various Emulator builtin commands
 that deal with regenerating source code from object code.

 We were recently presented with a piece of software which (wouldn't you
 know it) existed only in object form on a Xerox 820 CP/M system. The
 owner of this little utility really wanted to move it to a 16-bit
 Hyperion system, cause the utility sets up a Z80 SIO and that's what the
 Hyperion has - an SIO.

 So he was wondering - could we regenerate the source code for this
 little utility?

 NOTE: The first step is to read the thing into Z80 memory
 with the Emulator, and clear any previous resource control
 breaks.

 Z80 C>read 100 820init.com

 *** Low = 0100H Next = 0380H
 *** Z80 DMA, PC and Stack automatically set for .COM file
 Z80 C>control clear

 Z80 C>list include addresses opcodes

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 USING THE RESOURCE BUILTIN COMMANDS

 NOTE: The next thing to do is take a quick look at the
 program, and get a general feel for what it does.

 Z80 C>list

 L0100: 11 45 02 LD DE,L0245
 L0103: CD 40 02 CALL L0240
 L0106: 11 C8 02 LD DE,L02C8
 L0109: CD 40 02 CALL L0240
 L010C: CD 35 02 CALL L0235
 L010F: FE 0D CP CR
 L0111: C2 16 01 JP NZ,L0116
 L0114: 3E 36 LD A,'6'
 L0116: D6 30 SUB '0'

 NOTE: This isn't real promising. Let's dump the thing and
 look for obvious ASCII strings.

 Z80 C>d 100 37f

 ADDR 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 01234567 89ABCDEF
 ---- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -------- --------
 0100: 11 45 02 CD 40 02 11 C8 02 CD 40 02 CD 35 02 FE .E.M@..H .M@.M5.~
 0110: 0D C2 16 01 3E 36 D6 30 FE 00 DA 06 01 FE 0A D2 .B..>6V0 ~.Z..~.R
 0120: 06 01 32 58 03 11 EF 02 CD 40 02 CD 35 02 FE 0D ..2X..o. M@.M5.~.
 0130: C2 35 01 3E 4E FE 45 CA 47 01 FE 4F CA 47 01 FE B5.>N~EJ G.~OJG.~
 0140: 4E CA 47 01 C3 25 01 32 5A 03 11 16 03 CD 40 02 NJG.C%.2 Z....M@.
 0150: CD 35 02 FE 0D C2 5A 01 3E 38 D6 30 FE 07 CA 69 M5.~.BZ. >8V0~.Ji
 0160: 01 FE 08 CA 69 01 C3 4A 01 32 59 03 3A 58 03 FE .~.Ji.CJ .2Y.:X.~
 0170: 00 C2 79 01 3E 0F C3 B7 01 FE 01 C2 83 01 3E 0E .By.>.C7 .~.B..>.
 0180: C3 B7 01 FE 02 C2 8D 01 3E 0C C3 B7 01 FE 03 C2 C7.~.B.. >.C7.~.B
 0190: 97 01 3E 0A C3 B7 01 FE 04 C2 A1 01 3E 07 C3 B7 ..>.C7.~ .B!.>.C7
 01A0: 01 FE 05 C2 AB 01 3E 06 C3 B7 01 FE 06 C2 B5 01 .~.B+.>. C7.~.B5.
 01B0: 3E 05 C3 B7 01 3E 02 32 58 03 3A 5A 03 FE 45 C2 >.C7.>.2 X.:Z.~EB
 01C0: C7 01 3E 03 C3 D3 01 FE 4F C2 D1 01 3E 01 C3 D3 G.>.CS.~ OBQ.>.CS
 01D0: 01 3E 00 32 5A 03 3A 59 03 FE 07 CA EB 01 3E 60 .>.2Z.:Y .~.Jk.>`
 01E0: 32 5B 03 3E C0 32 5C 03 C3 F5 01 3E 20 32 5B 03 2[.>@2\. Cu.>2[.
 01F0: 3E 40 32 5C 03 F3 3E 18 D3 06 D3 06 3E 01 D3 06 >@2\.s>. S.S.>.S.
 0200: AF D3 06 3E 04 D3 06 3A 5A 03 C6 44 D3 06 3E 03 /S.>.S.: Z.FDS.>.
 0210: D3 06 3A 5C 03 C6 01 D3 06 3E 05 D3 06 3A 5B 03 S.:\.F.S .>.S.:[.
 0220: C6 8A D3 06 3E 47 D3 00 3A 58 03 D3 00 FB 11 3D F.S.>GS. :X.S.{.=
 0230: 03 CD 40 02 C9 0E 01 CD 05 00 FE 60 D8 D6 20 C9 .M@.I..M ..~`XVI
 0240: 0E 09 C3 05 00 1A 49 4E 49 54 20 31 2E 30 20 66 ..C...IN IT 1.0f
 0250: 6F 72 20 58 65 72 6F 78 20 38 32 30 0D 0A 0A 0A or Xerox 820....
 0260: 0D 0A 42 61 75 64 20 52 61 74 65 73 3A 0D 0A 31 ..Baud R ates:..1
 0270: 39 32 30 30 20 3D 20 30 0D 0A 39 36 30 30 20 20 9200 = 0 ..9600

 USING THE RESOURCE BUILTIN COMMANDS

 0280: 3D 20 31 0D 0A 34 38 30 30 20 20 3D 20 32 0D 0A = 1..480 0 = 2..
 0290: 32 34 30 30 20 20 3D 20 33 0D 0A 31 32 30 30 20 2400 = 3..1200
 02A0: 20 3D 20 34 0D 0A 20 36 30 30 20 20 3D 20 35 0D = 4.. 6 00 = 5.
 02B0: 0A 20 33 30 30 20 20 3D 20 36 0D 0A 20 31 31 30 . 300 = 6.. 110
 02C0: 20 20 3D 20 37 0D 0A 24 0D 0A 53 65 6C 65 63 74 = 7..$..Select
 02D0: 20 62 61 75 64 20 72 61 74 65 20 20 20 20 20 20 baud ra te
 02E0: 20 20 20 20 20 28 31 2D 39 29 3A 20 36 08 24 0D (1- 9): 6.$.
 02F0: 0A 53 65 6C 65 63 74 20 70 61 72 69 74 79 20 20 .Select parity
 0300: 28 4F 64 64 2C 20 45 76 65 6E 2C 20 4E 6F 6E 65 (Odd, Ev en, None
 0310: 29 3A 20 4E 08 24 0D 0A 53 65 6C 65 63 74 20 77): N.$.. Select w
 0320: 6F 72 64 20 6C 65 6E 67 74 68 20 20 20 20 20 20 ord leng th
 0330: 28 37 20 6F 72 20 38 29 3A 20 38 08 24 0D 0A 43 (7 or 8) : 8.$..C
 0340: 6F 6D 6D 75 6E 69 63 61 74 69 6F 6E 73 20 70 6F ommunica tions po
 0350: 72 74 20 73 65 74 2E 24 00 00 00 00 00 00 00 00 rt set.$
 0360: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0370: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 NOTE: Well, there are some strings that are terminated with
 dollar signs. This is a heavy hint that these strings are to
 be displayed by BDOS function 9. Let's start our control
 table by filling in what we know so far...

 Z80 C>c 100 instructions

 Z80 C>= 100 startup

 Z80 C>c 245 b

 Z80 C>= 245 init_msg

 Z80 C>= 2c8 baud_prompt

 Z80 C>= 2ef parity_prompt

 Z80 C>= 316 databits_prompt

 Z80 C>= 33d wrapup_msg

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 USING THE RESOURCE BUILTIN COMMANDS

 NOTE: Now let's look at the first code bytes again, and see
 if they make any more sense.

 Z80 C>l 100

 STARTUP:
 L0100: 11 45 02 LD DE,INIT_MSG
 L0103: CD 40 02 CALL L0240
 L0106: 11 C8 02 LD DE,BAUD_PROMPT
 L0109: CD 40 02 CALL L0240
 L010C: CD 35 02 CALL L0235
 L010F: FE 0D CP CR
 L0111: C2 16 01 JP NZ,L0116
 L0114: 3E 36 LD A,'6'
 L0116: D6 30 SUB '0'

 NOTE: So the routine at 0240h does something with a "$"-
 terminated string. Need we guess?

 Z80 C>l 240

 L0240: 0E 09 LD C,TAB
 L0242: C3 05 00 JP L0005

 INIT_MSG:
 DB SUB,"INIT 1.0 for Xero"
 L0245: 1A 49 4E 49
 L0249: 54 20 31 2E
 L024D: 30 20 66 6F
 L0251: 72 20 58 65
 L0255: 72 6F

 NOTE: First of all, note how the above disassembly changed
 from instructions to data, just as we told it to. Note also
 that this routine at 0240h is simple enough to document...

 Z80 C>= 5 bdos

 Z80 C>; 240 "\nPrint $-terminated string at (DE)"

 Z80 C>c 240 i

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 USING THE RESOURCE BUILTIN COMMANDS

 Z80 C>= 240 print_string

 Z80 C>l 240

 PRINT_STRING:

 ;
 ; Print $-terminated string at (DE)
 ;
 L0240: 0E 09 LD C,TAB
 L0242: C3 05 00 JP BDOS

 INIT_MSG:
 DB SUB,"INIT 1.0 for Xero"
 L0245: 1A 49 4E 49
 L0249: 54 20 31 2E
 L024D: 30 20 66 6F
 L0251: 72 20 58 65
 L0255: 72 6F

 NOTE: OK, one routine down. Referring back to our disassembly
 of the startup code, let's see what else we can figure out.

 Z80 C>= 106 get_baud_rate

 Z80 C>l startup

 STARTUP:
 L0100: 11 45 02 LD DE,INIT_MSG
 L0103: CD 40 02 CALL PRINT_STRING

 GET_BAUD_RATE:
 L0106: 11 C8 02 LD DE,BAUD_PROMPT
 L0109: CD 40 02 CALL PRINT_STRING
 L010C: CD 35 02 CALL L0235
 L010F: FE 0D CP CR
 L0111: C2 16 01 JP NZ,L0116
 L0114: 3E 36 LD A,'6'
 L0116: D6 30 SUB '0'

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 USING THE RESOURCE BUILTIN COMMANDS

 NOTE: We have another routine to decipher - at 0235h.

 Z80 C>l 235

 L0235: 0E 01 LD C,SOH
 L0237: CD 05 00 CALL BDOS
 L023A: FE 60 CP '`'
 L023C: D8 RET C
 L023D: D6 20 SUB ' '
 L023F: C9 RET

 PRINT_STRING:

 ;
 ; Print $-terminated string at (DE)
 ;
 L0240: 0E 09 LD C,TAB
 L0242: C3 05 00 JP BDOS

 INIT_MSG:
 DB SUB,"INIT 1"
 L0245: 1A 49 4E 49
 L0249: 54 20 31

 NOTE: Notice how the disassembly continued way past the end
 of our routine. That's because we didn't give an ending
 address. At any rate, the routine at 0235h appears to call
 BDOS to get a keypress, then force it to uppercase. It
 contains a slight bug, but our job right now is to re-source
 it, not fix it.

 Z80 C>= 235 get_bdos_keypress

 Z80 C>c 235 i

 Z80 C>; 235 "\nReturn next keypress as Uppercase char in A-reg"

 Z80 C>; 237 "Use BDOS to get next keypress"

 Z80 C>; 23a "Is it lowercase char?"

 Z80 C>; 23c "No, return it as-is"

 Z80 C>; 23d "Yes, convert to uppercase"

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 USING THE RESOURCE BUILTIN COMMANDS

 Z80 C>l 235

 GET_BDOS_KEYPRESS:

 ;
 ; Return next keypress as Uppercase char in A-reg
 ;
 L0235: 0E 01 LD C,SOH
 L0237: CD 05 00 CALL BDOS ;Use BDOS to get next
 keypress
 L023A: FE 60 CP '`' ;Is it lowercase char?
 L023C: D8 RET C ;No, return it as-is
 L023D: D6 20 SUB ' ' ;Yes, convert to uppercase
 L023F: C9 RET

 PRINT_STRING:

 ;
 ; Print $-terminated string at (DE)
 ;
 L0240: 0E 09 LD C,TAB
 L0242: C3 05 00 JP BDOS

 INIT_MSG:
 DB SUB,"INIT 1"
 L0245: 1A 49 4E 49
 L0249: 54 20 31

 NOTE: OK, our little routines are understood and documented.
 Back to the main code, and add comments that clarify things.

 Z80 C>; 100 "Give intro screen"

 Z80 C>; 106 "Ask for baudrate value" ; 106 "Ask for baudrate value"

 Z80 C>; 10f "RETURN only?"

 Z80 C>; 111 "No, look at keypress"

 Z80 C>; 114 "Yes, use default value"

 Z80 C>= 116 edit_baud_rate

#COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 USING THE RESOURCE BUILTIN COMMANDS

 Z80 C>l get_baud_rate 12b

 GET_BAUD_RATE:
 L0106: 11 C8 02 LD DE,BAUD_PROMPT ;Ask for baudrate
 value
 L0109: CD 40 02 CALL PRINT_STRING
 L010C: CD 35 02 CALL GET_BDOS_KEYPRESS
 L010F: FE 0D CP CR ;RETURN only?
 L0111: C2 16 01 JP NZ,EDIT_BAUD_RATE ;No, look at
 keypress
 L0114: 3E 36 LD A,'6' ;Yes, use default
 value

 EDIT_BAUD_RATE:
 L0116: D6 30 SUB '0'
 L0118: FE 00 CP NUL
 L011A: DA 06 01 JP C,GET_BAUD_RATE
 L011D: FE 0A CP LF
 L011F: D2 06 01 JP NC,GET_BAUD_RATE
 L0122: 32 58 03 LD (L0358),A
 L0125: 11 EF 02 LD DE,PARITY_PROMPT
 L0128: CD 40 02 CALL PRINT_STRING
 L012B: CD 35 02 CALL GET_BDOS_KEYPRESS

 NOTE: And so on, and so on, and so on....

 We'll not present all of the output here. Although the session actually
 lasted less than half an hour, the output is huge. Instead, let us skip
 ahead to the point where we've finished defining our control table.

 NOTE: At this point - having done all of this work to con-
 struct documentation of the object code - we should save the
 control table to disk!

 Z80 C>control write 820init.ctl

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 USING THE RESOURCE BUILTIN COMMANDS

 NOTE: Having done that, we must prepare things for the actual
 generation of the .ASM file. Specifically, we should exclude
 addresses, opcodes, and flags from disassembly source lines.

 Z80 C>list include

 NOTE: Now we can disassemble the object code to disk as source
 code. First we write the prologue, and then the program
 itself:

 Z80 C>list prologue 100 360 >820init.asm

 Z80 C>list 100 360 >>820init.asm

 NOTE: Having done that, let's test things by running the .ASM
 file through M80.COM...

 Z80 C>m80 820init.rel,820init.prn=820init.asm
 %No END statement
 %No END statement

 No Fatal error(s)

 That's it. We're done. The assembler version of 820INIT.COM has been
 written and verified.

 For your enjoyment, we have included with Z80MU the various 820INIT
 files that were used or created by the above session. Feel free to
 examine all of these files, especially 820INIT.ASM and 820INIT.PRN. They
 give you a good idea of the quality of source code that can be recreated
 from a given object program.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 Appendix A: Layout of CP/M Segment

 Appendix A: Layout of Simulated CP/M Segment (as set by Cold Boot)

 0000: JMP 0FF03H ;to our fake BIOS
 0003: DB ? ;IOBYTE
 0004: DB ? ;Login Byte (drive, User Number)
 0005: JMP 0FEFEH ;to our fake BDOS
 005C: DB ? ;Default FCB
 0080: DB ? ;Default DMA and Command Tail
 0100: DB ? ;start of TPA
 FEFD: DB ? ;last byte of TPA
 FEFE: HALT ;our BDOS hook
 FEFF: RET ;return from BDOS
 FF00: JMP 0FF80H ;BIOS COLD BOOT vector
 FF03: JMP 0FF82H ;BIOS WARM BOOT vector
 FF06: JMP 0FF84H ;BIOS console status
 FF09: JMP 0FF86H ;BIOS console input
 FF0C: JMP 0FF88H ;BIOS console output
 FF0F: JMP 0FF8AH ;BIOS list output
 FF12: JMP 0FF8CH ;BIOS punch output
 FF15: JMP 0FF8EH ;BIOS reader input
 FF18: JMP 0FF90H ;BIOS home disk
 FF1B: JMP 0FF92H ;BIOS select disk
 FF1E: JMP 0FF94H ;BIOS set track
 FF21: JMP 0FF96H ;BIOS set sector
 FF24: JMP 0FF98H ;BIOS set DMA address
 FF27: JMP 0FF9AH ;BIOS read sector
 FF2A: JMP 0FF9CH ;BIOS write sector
 FF2D: JMP 0FF9EH ;BIOS list status
 FF30: JMP 0FFA0H ;BIOS (unimplemented)
 FF33: JMP 0FFA2H ;BIOS (unimplemented)
 FF36: JMP 0FFA4H ;BIOS (unimplemented)
 FF39: JMP 0FFA6H ;BIOS (unimplemented)
 FF3C: JMP 0FFA8H ;BIOS (unimplemented)
 FF3F: JMP 0FFAAH ;BIOS (unimplemented)
 FF42: JMP 0FFACH ;BIOS (unimplemented)
 FF45: JMP 0FFAEH ;BIOS (unimplemented)
 FF48: JMP 0FFB0H ;BIOS (unimplemented)
 FF4B: JMP 0FFB2H ;BIOS (unimplemented)
 FF4E: JMP 0FFB4H ;BIOS (unimplemented)
 FF51: JMP 0FFB6H ;BIOS (unimplemented)
 FF54: JMP 0FFB8H ;BIOS (unimplemented)
 FF57: JMP 0FFBAH ;BIOS (unimplemented)
 FF5A: JMP 0FFBCH ;BIOS (unimplemented)
 FF5D: JMP 0FFBEH ;BIOS (unimplemented)
 FF60: JMP 0FFC0H ;BIOS (unimplemented)
 FF63: JMP 0FFC2H ;BIOS (unimplemented)
 FF66: JMP 0FFC4H ;BIOS (unimplemented)

 Appendix A: Layout of CP/M Segment

 FF69: JMP 0FFC6H ;BIOS (unimplemented)
 FF6C: JMP 0FFC8H ;BIOS (unimplemented)
 FF6F: JMP 0FFCAH ;BIOS (unimplemented)
 FF72: JMP 0FFCCH ;BIOS (unimplemented)
 FF75: JMP 0FFCEH ;BIOS (unimplemented)
 FF78: JMP 0FFD0H ;BIOS (unimplemented)
 FF7B: JMP 0FFD2H ;BIOS (unimplemented)

 FF80: HALT ;BIOS COLD BOOT hook
 FF81: RET
 FF82: HALT ;BIOS WARM BOOT hook
 FF83: RET
 FF84: HALT ;BIOS console status
 FF85: RET
 FF86: HALT ;BIOS console input
 FF87: RET
 FF88: HALT ;BIOS console output
 FF89: RET
 FF8A: HALT ;BIOS list output
 FF8B: RET
 FF8C: HALT ;BIOS punch output
 FF8D: RET
 FF8E: HALT ;BIOS reader input
 FF8F: RET
 FF90: HALT ;BIOS home disk
 FF91: RET
 FF92: HALT ;BIOS select disk
 FF93: RET
 FF94: HALT ;BIOS set track
 FF95: RET
 FF96: HALT ;BIOS set sector
 FF97: RET
 FF98: HALT ;BIOS set DMA address
 FF99: RET
 FF9A: HALT ;BIOS read sector
 FF9B: RET
 FF9C: HALT ;BIOS write sector
 FF9D: RET
 FF9E: HALT ;BIOS list status
 FF9F: RET
 FFA0: HALT ;BIOS (unimplemented)
 FFA1: RET
 FFA2: HALT ;BIOS (unimplemented)
 FFA3: RET
 FFA4: HALT ;BIOS (unimplemented)
 FFA5: RET
 FFA6: HALT ;BIOS (unimplemented)
 FFA7: RET

 Appendix A: Layout of CP/M Segment

 FFA8: HALT ;BIOS (unimplemented)
 FFA9: RET
 FFAA: HALT ;BIOS (unimplemented)
 FFAB: RET
 FFAC: HALT ;BIOS (unimplemented)
 FFAD: RET
 FFAE: HALT ;BIOS (unimplemented)
 FFAF: RET
 FFB0: HALT ;BIOS (unimplemented)
 FFB1: RET
 FFB2: HALT ;BIOS (unimplemented)
 FFB3: RET
 FFB4: HALT ;BIOS (unimplemented)
 FFB5: RET
 FFB6: HALT ;BIOS (unimplemented)
 FFB7: RET
 FFB8: HALT ;BIOS (unimplemented)
 FFB9: RET
 FFBA: HALT ;BIOS (unimplemented)
 FFBB: RET
 FFBC: HALT ;BIOS (unimplemented)
 FFBD: RET
 FFBE: HALT ;BIOS (unimplemented)
 FFBF: RET
 FFC0: HALT ;BIOS (unimplemented)
 FFC1: RET
 FFC2: HALT ;BIOS (unimplemented)
 FFC3: RET
 FFC4: HALT ;BIOS (unimplemented)
 FFC5: RET
 FFC6: HALT ;BIOS (unimplemented)
 FFC7: RET
 FFC8: HALT ;BIOS (unimplemented)
 FFC9: RET
 FFCA: HALT ;BIOS (unimplemented)
 FFCB: RET
 FFCC: HALT ;BIOS (unimplemented)
 FFCD: RET
 FFCE: HALT ;BIOS (unimplemented)
 FFCF: RET
 FFD0: HALT ;BIOS (unimplemented)
 FFD1: RET
 FFD2: HALT ;BIOS (unimplemented)
 FFD3: RET
 FFD4: ;rest reserved for scratch use

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 Appendix B: Bugs and Future Plans

 Appendix B: Bugs and Future Plans

 This section describes known bugs and otherwise strange Emulator
 activity. Please help us to improve the product by sending us your own
 bug reports, with as much detail as possible (including programs
 which demonstrate the bug).

 These bugs will be fixed as time allows and user interest demands.

 Issue: The disassembly (list) command can become quite pokey.
 As the control table grows, disassembly speed decreases.
 When disassembling the Model 100's ROM, for instance, the
 poor disassembler is faced with a control table that is
 something bigger than 42K in size. It may have to
 search most of the table for each memory reference. This
 yields a disassembly speed of a line or two a second.
 Boo! The control table search routines should be changed
 from a sequential to an indexed method.

 Author's Response: Agreed. Will rewrite these for next
 release.

 Issue: Some commands (notably those that accept a range of
 CP/M addresses) get confused if they are asked to wrap
 around the high end of the 64K CP/M segment.

 Author's Response: Have applied fixes for most glaring
 problems. Would appreciate specifics (i.e. - what
 commands fail and how) to help track down the rest.

 Issue: Internal I/O redirection (effected by the Emulator, not
 PCDOS) should be available for any Emulator command, not
 just the list command.

 Author's Response: Agreed. Will look into it.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 Appendix B: Bugs and Future Plans

 Issue: The patch command ought to allow multiple entries per
 line, and ought to accept arguments on the patch command
 line without dropping into interactive patch mode.

 Author's Response: Have provided left-handed solution by
 allowing a patch string on same line as patch command.
 True fix (with multiple byte values as independent args
 on command line) will take a while to implement.

 Issue: The Emulator lacks a mini assembler. It needs one.

 Author's Response: Agreed. We just don't have the memory left
 in the 64K Lattice code segment to do it right. Maybe
 after some major rework...

 Issue: The Emulator's main program ought to be rewritten in
 Microsoft C version 3.0. This will speed it up consider-
 ably, and will make it a lot smaller.

 Author's Response: Agreed. The major effort is in reworking
 the assembler subroutines. There are a lot of places
 where Lattice's calling convention and register usage is
 assumed.

 Issue: It would be nice to somehow state to the Emulator that
 what is in CP/M memory is actually an 8080 or 8085
 program. This would allow the 8085's RIM and SIM instruc-
 tions, for example, to be properly disassembled (instead
 of being misinterpreted as Z80 relative jumps).

 Author's Response: Agreed. The biggest obstacle to doing this
 is the same old bugaboo - no memory left in 64K code
 segment. Will put this off until we free up a couple of
 K in the code segment.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

 Appendix B: Bugs and Future Plans

 Issue: The loading of Z80 .COM files to be executed - in fact,
 any file load that is done directly or indirectly by the
 "read" command - is just too slow.

 Author's Response: Agreed! This should be redone to bypass
 Lattice C's slow I/O routines. This problem may go away
 if and when the Emulator is rewritten in Microsoft 'C'
 version 3.0.

 Issue: The disassembler can get confused when a multi-byte
 opcode crosses a control break. In general, it reverts
 to DB pseudo ops up to the control break when this
 happens. Also, it's not too smart when disassembling
 code with addresses up around the 64K segment boundary.

 Author's Response: I have tried to locate and eliminate
 peephole problems. The nature of the problem, however,
 goes to the very core of the disassembler as designed.
 This is not quickly (or cheaply) fixable.

 Issue: There are too many CP/M applications which abort
 because they use BDOS functions 27/1Bh and 31/1Fh. These
 BDOS functions should be supported, even if they mean
 little on a PCDOS system.

 Author's Response: Agreed. The only reason that they haven't
 been emulated is that I have yet to find a sensible
 writeup of just exactly what the various data formats
 are. DRI's writeup stinks. If someone can provide a
 clear explanation of just what they truly mean, then
 I'll emulate them.

 Issue: There are more than 600 distinct instructions in the
 Z80. Have they all been validated as to the accuracy of
 the emulation?

 Author's Response: So far, all we've done is run Z80 stuff and
 try to guess that it has run fine. All opcodes have been
 desk-checked. Not all opcodes have been tested. Most, in
 fact, have not even been executed. Would somebody please
 create a definitive test program? The diagnostics that
 we've tried (like Supersoft's) have proven to be inac-
 curate.

 Appendix B: Bugs and Future Plans

 Issue: There should be an option to allow pagination of
 disassembled object code.

 Author's Response: Agreed. Will look into another list include
 option to specify pagination.

 Issue: Expressions are currently limited to "+" and "-"
 operators. They should allow "*" and "/" also, and maybe
 even AND, OR, XOR, shifts, etc.

 Author's Response: I disagree. The amount of work involved
 isn't justified by the benefit.

 Issue: The Z80 IN and OUT instructions should have access to
 real 8088 I/O ports on the IBM PC.

 Author's Response: Over my dead body.

 COMPUTERWISE CONSULTING SERVICES, P.O. BOX 813, MCLEAN, VA 22101

